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\ SUMMARY

This monograph summarizes the gas dynamics of high-speed guns,
utilizing a gas of low molecular weight at high temperature. Theory
and test results are presented. The reader is assumed to be an advanced

student in engineering. The fundamental ideas and equations are fully
developed.

SOMMAIRE

La monographie suivante s’occupe en resumd de la dynamique des gaz
des ocanons & grande vitesse on employant un gaz de poids moldculaire bas
4 haute température. On rend compte de la thdorie et des rdésultats
d' expériences. Il est admis que le liseur sera au courant au sujet du
génie oivil avancé. Les principes et les formules sont largement exposds,
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PP Gun
PPIG Gun
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P

NOTATION

cross-sectional area of barrel

cross-sectional area of chamber

sound speed

sound speed of the gas at x,

covolume

diameter of barrel

diameter of chamber

covolume in semi-empirical entropic equation (66-1)

internal energy of & system in general

frictional force per unit mass at wall on gas layer due to boundafy layer

ness of propellant gas in a PP Gun, or mess of gas in barrel of constant
base pressure gun

mass of gas in back chamber of & two-stage gun
Legrangian coordinate defined as [po dx

enthalpy

barrel length

molecular weight

projectile mass "
mass of piston in pump tube of two-stage gun

number of moles, or exponent in empirically fitted isentropic equation
preburned propellant gun

preburned propell‘nt gun with an ideal gas propellant
pressure

spacial average pressure

heat transfer per unit mass to gas layer

ix.
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utiversal

pus cousiaui

gas constant for & mole of a particular gas (equals R/m)

entropy

time coordinate

temperature

internal energy of a system independent of motion, gravity, capillarity,

electricity, and magnetism

velocity

velocity of a projectile propelled by & constant pressure (p,)

projectile velocity

increase of projectilé'velocity due to chambrage

1ncreése of projectile velocity due to infinite chambrage

velocity of projectile when first wave reflected from breech reaches it

escape vefocity

projectile
projectile
projectile
projectile

projectile

velooity with boundary layer and friction effects
velocity without bounda¥y—1nyer and friotion effects
valocity when there is gas In front of the projectile
velooity when there is no gas in front of the projeoéile

veloclity at muzzle

specific volume

distance coordinate

position of projectils

length of chamber in PP gun

the x coordinate of characteristic line at t = 0 1in the gas in a

constant base pressure gun

value of acceleration of gas mnd projectile in the constant base pressure

gun equal to p.A,/M
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Subscripts

c

f

00

traction OI additional gas particles, used 1n thermal equation:
p = p(1 + )RT

constant in van der Waals equation of state which accounts for the
attractive forces between molecules

parameter which is exponent of semi-empirical entropic equation of state
(Equation (88-1))

ratio of specific heats

defined as (up O - Oh)/bb (see Equation (24-3)), used in p-u relation
for chambered x, = ® , PPIG Gun

parameter which occurs in semi-empiricel equatioun (Equation (66-1))

the x coordinate on a characteristic line in the gas of s constant base
pressure gun

density
Riemann Function defined from do = (dp/ap),

the t coordinate on a characteristic line in the gas of a constant base
pressure gun

deno£es position in chember at entrance to transition section ' ‘
denotes gas directly in front of projectile
denotes gas directly behind shock in barrel ‘
denotes position in barrel at exit of transition section

refers to gas directly behind the projectile or to the projectile

refers to initial state of gas in chamber of PP gun, or to conditions
behind projectile in a constant base pressure gun

refers to position on characteristic at t = 0 in gas of constant base
pressure gun

denotes initial state of gas in barrel in front of projectile or state
of gas in front of shock

denotes state of gas beiiind shock

x1
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Lo

denotes sonic conditions

denotes time when gas becomes sonic at the x = 0 position in & constant
base pressure gun

Other Symbols

D

Dt

denotes time rate of change of a quantity when traveling with the velocity
of a disturbance (u * a); thus

= a+ t °
Dt ot (u a')ax

denotes time rate of change of a quantity when traveling with the velocity
of a gas particle (u); thus

d 3 9

a6 ot U ax

Bars over quantities denote nondimensionel quantities; defined in text.

ldeal gas - & gas described by the equations pv = RT and pv” = constant.

xii




PART I. INTRODUCTORY REMARKS

Section 1
Purpose of Monograph

In the year 1945, arter 700 years of shooting guns, the maximum velocity of
projectiles was 10,000 ft/sec. However, within the past 20 years projectile
velocities obtained from guns have risen spectacularly to a value of 37,080 ft/sec.*
This surprisingly large gain in velocity during a relatively short period of time
was the result of a vigovous effort pursued to make possible the study of hypervelocity
phenomena in the laboratory. The increase in projectile velocity was a reflection of
the increase in our knowledge of the interior ballistics process; the increase in
knowledge still continuss, and, coupled with our advancing technology, gives promise
of effecting in the next 20 years equally large projectile velocity inoreases.
Projectile velocities of 60,000 ft/sec by 1985 seem not only possible but probable.

What is the extent of our knowledge of interior ballistics which made possible the
startlingly large gain in projectile velocity? This monograph will address itself to
answering this query., It will summarize our understanding of the gas dynamics of
high-speed guns, those firing projectiles above 10,000 ft/sec. As is now well
known, in order to achieve high speeds, a gun must use a hot “light gas’ as a
propellant, that is, a gas of low molecular weight at high temperature. This require-
ment for a hot lizht gas propellant becomes obvious from the interior ballistics theory
as unfolded below, ,

The reader is assumed not to be an expert in the fleld of interior ballistics, but
is assumed to be a graduate student in engineering. Consequently, the fundamental
ideas and equations are rather fully presented; thus, included in some detail in the
main text and appendices are explanations of the method of charaoteristics. Inoluded
also are methods for ocalculating gun performence which have now become unnecessary
because of the use of slesctronic computing machines; nevertheless, these methods ald
in the understanding of the interior ballistios., It is hoped that the more knowledga-
able reader will adjust to the inclusion of much elementary material and to the
repetitious style used for olarity.

Section 2

The Basic Requirements for a High-Speed Gun

The basic factors determining the speed of a projectile propelled from a gun may be
simply obtained hy applying Newton'’s foroe equation to the projectile. Schematiocally,
the projectile, during its travel in the gun barrel, may be représented a8 in the sketch
on the following page.

* NASA, Ames Research Center (April 1pes).




Barrel of cross-
M sectional area

Ap

L

The projectile mass is denoted by M , the length of barrel by L , and the cross-
sectional area of the barrel by A . The propellant pressure at the back end of the
projectile is denoted by the letter Py - At any instant of time Newton’s Law
applied to the projectile yields*

! du du
“M—L = Mu, —E = A 2-

where u,. is the instantancous projectile velocity and x
distance traveled by the projectile.

P is the corresponding

If Equation (2-1) is integrated, it becomes
MV"‘/Z- = A f"p dx (2-2)
o PR

where V is the muzzle velocity of the peroctile. With p , the spatisl average
propelling pressure, defined es

1 pL
= fc p, dx, (2-3)
thue projectile velocity becomes
™ v /. (2-4)

This result, Equatio: (2-4), indicates essentially the factors upon which the
projectile velocity depends. To inorease the projectile velocity, one must increase
the value of the quantities under the square ront sign. Thus, the one step in
achieving a higher projeotile velocity 18 to change the sizes of the projectile and
barrel so as to increase the value of AL/M ; this requires, for a given cross-
sectional area A of the barrel, that M be made smaller and L larger.

(Note that if a gun 18 made larger by geometrioally scaling it, AL/M remains the
same.) However, practicality limits these changes, for M may be made only so
small for a given barrel diameter and L may be made only so large (&s frictional

-

and gas dynamic effeots lower § substantially if the barrel is too long - see below).

* For purposes of this discussion, the air pressure in front of the projectile and the frictional
force acting on the projectile have been assumed negligible,
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Unfortunately, after having made AL/M as large as practical, it is found with a

conventional propellant gun that the projectile velocity is still much below that
denired,

From the above considerations one is led to the conclusion that after AL/M is
made as large as practical, the only method of achieving high velocity is to increase
the average propelling pressure P .

The reason for the difficulty in obtaining a high average pressure in the case of a
gun using @ convertional powder propellant is illustrated by the following sketch.

Here the pressure behind the projectile in the conventional gun is plotted as &
function of its travel. The rise in pressure from zero to the peak pressure Py
results from the burning of the propellant; as will bt shown below, the rapid pressire
decrease thereafter results mainly from the propellant inertia as the propellant gas
accelerates to push the projectile., It is evident from the sketoh that the average

-

pressure § is considerably below the peak pressure Py for the conventional
propellant.

0f course, increasing the amount of propellant in the chamber would inorease p
and thus p ., but the strength of the gun limits the value of p, . BY using the
naximum amount of conventional gunpowder which may be contained even by speoially
strengthened guns, velocities of about 12,000 ft/sec have been reached with low mass

projectiles, This veloocity is about the maximum achievable with the conventional
propellant gun system.

An indicated in the preceding paragraph, there is obviously a practical limit to
the strength of the parts of a gun. The main parts of a gun system are (a) the
projectile, (b) the barrel, and (c) the gun chamber or chambers, The values of
stresses experienocrd by each of these components is dependent on the pressure pulse
to which it is subjected. (The ratu of pressure appliocation, as well ey the value
of the peak pressure, determinas the stresses experienced.) 1In piactice, the chambers
and barrels of guns may be designed to withstand static pressures up to about
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130,000 1b/in? without being permanently deformed; a rugged projectile, similarly,
may be designed to withstand 130,000 1b/in¢, whereas a fragile projectile may only
withstand, perhaps, 250,000 lb/inz.' Parts which are expendable may be designed to
deform but not rupture at transient pressireas as high as 1,000,000 1h/in?.

This discussion points to the main requirement in achieving e high projectile
velocity after having macde AlL/M as large as possible: the requirement of obtaining
a high uverage pressure [ behind & projectile, while at the same time limiting the
pressure rise in all parts of the gun system so as not to cause unacceptable damage
to the parts.

Section 3

The Velocity Attainable by Use of a
Constant Base Pressure Propellant

For a gun of given geometry propelling a given projectile, the quantities A , L,
and M are fixed, For this gun system there is a maximum allowable pressure Py
which the projectile can sustain, Under idealized circumstances one could hope that
the pressure of the propellant propelling the projectile would he constant and equal
to p, during the entire projectile travel. (Thus, P = Py = a constant.) This
situation is shown in the following sketch,

M

50-_;_.4{;223: Py=0

J

I
e
|

p

—
"
}|

L
o
L =

* Instead of the streas capability of the projeotile, one may disouss the acoeleration
onpability, The latter description may, be more pertinent if the projectile carrics “g”
limited payloads.
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Such an imagined propellant, whose propelling pressure would be maintained at a
vunsiant vaiue, 18 Known as a “constant base pressure propellant’ or “constant pressure
propellant’. 1In this case the projectile velocity attuined would be the maximum
attainable velocity ;or the given gun system. This veloeity, denoted as u, ., is
easily calculated by applying Newton's Law to the projectile, Thus®

du du
M—d—é’- = Mup-a;f = PA = DA (3-1)

which, when integrated along the barrel length, yields

2p AL

a4 = — (3-2)

. The first calculation one should make for a given gun when attempting to assess its
possibilities of attaining high velocity is the calculetion of wu,; for u, is the
highest veloocity attainable,

If, for example, a sphere is chosen as the projectile, u, becomes

2D AL 20 ((TD?/4)L, 3p, /L
u, = 2 = 0 3 = .—-Q(—) (3-3)
M @rp¥/8) 0 Py \D/
where Fp is the density of the projectile. Thus, for a very light projectile such

as & nylen sphere (pp = 1,2 g/om%) in a gun with a long barrel (L/D = 300), with

b, = 100,000 1b/in? (a relatively high pressure), Equation (3-3) yields u, = 75,000
ft/se0,

For the same gun with p, = 30,000 1b/in? u, 1is oalculated to be 42,000 ft/sec.

It becomes obvious that, even in the ldealized case of a constant propelling
preasura, one needs for high velocity extremely long guns, high pressures, and low
projectile masses; these needs are even more pronounced in the actual case where
the average propelling pressure is much below the peak pressure, Thus, the quest for'

a high velooity gun becomes a quest for a propellant which will maintain the propelling
pressure at e high value.

* Here, for the purpose of obtaining the maximum attainable veloecity, the friction on the

projectile and air pressure in front of it are assumed negligible.

it




Section 4

Description of the Preburned Propellant Gun

In this section will be considered the gun system in which the propellant hes been
completely reacted before the projectile is allowed to move. This gun system is termed
a “Preburned Propellant” Gun and desigrated as a PP Gun. The gun is visualized as
consisting of a chamber of diameter D, joined by means of a transition section to a
barrel of diameter D, . The projectile 1s positioned initially so that its back end
is at the beginning of the barrel section. Immediately before the projectile begins
to move, the reacted propellant produces in the chamber a gas at an initial and peak
pregsure p, end sound speed a, , temperature T, , etc. (See the following sketch,)

Gradual or Abrupt

Reacted Propellant Transition Section

o

Barrel

__j(__.
v

Chamber

When the chamber diameter is greater than the barrel diameter (Do/h1 > 1) the gun
18 described as a “chambered’” gun, or a gun with “chambrage”. Whon the chamber
diemeter is equal to that at the barrel, the gun is desoribed as “having no chambrage’,
or a8 & “oonstant diameter gun”.

In practice a preburned propellant gun may employ & diaphragm to separate the
propellant in the chamber from the projectile; this diaphragm is ruptured when the
propellant has completed its reaction, Another possibility is the use of & “shear
disc” around the projectile itnelf which shears when the reaction has been completed.
One type of a preburned propellant gun is that which uses as a propellant a non-
reacting gas (such as compressed helium).

In a preburned propellant gun the projeotile is restriocted from movement until the
pressure has reuched a peak value; it will be shown below that, after the projectile
is released, the pressure hehind the projectile decreases as the projectile increases
in velooity and moves along the barrel. (Bee the following sketch.)

AR
[
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The attainment of high veloocity in this case requires that the pressure decrease be
minimized; for maximum veloocity one would wish for the constant pressure propellant
previously mentioned which would maintain its pressurs at the peak value p, behind
the projectile during the projectile's entire trpvel...,

If the pressure behind the projectile were maintained at the initial peak value
by » the velocity in this idealized case is as caloulated in Equation (3-2),

u, = Vap AL/M

In practioce a veloocity equal to the velocity u, for the preburned propellant gun is
unattainable; this is a consequence of the fact that in such a gun, as will be shown
below, the pressure behind the projectile inevitably must drop as the projectile

velocity lnoreuses; unfortunately, the greater the projeotile velocity, the greater
will be the drop. M

Section B

A Qualitative Description of the Pressure Disturbances
Occurring During Firing of a Preburned Propellant Gun

When the projectile in a gun begins to move, it momentarily leaves a slightly
evacuated or a lower pressure space behind it., The layer* of gas that was initially
behind the projectile quickly moves (an infinitessimal amount) toward the projectile

* The gas is imagined to be composed of thin layers or discs of gas which are perpendioular
to the axis of the gun.
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inilu Liils evacuaied space, Because there 1s now more space available to this first
gas layer, 1is pressure drops. The layer of gas immediately behind the first layer of
gas then, likewise, finds itself next to a slightly evacuated space (as a result of
the first layer's motion) and so it likewise moves into the evacuated aspace, Similarly,
each successive layer In turn moves into the space in front of it wbhich has been just
previously evacuated., This progression of successive movement is & disturbarce in the
gas which proceeds at the speed of sound. Since this disturbance is characterized by
the fact that it decreases the pressure and density of the gas through which 1t passes,
it is termed a rarefaction disturbance, (Other names for the disturbance gre impulse
wave, wavelet, or pulse; the adjective “acoustic’” o. “scund” is often put in front of
these terms.)

- o o @ 'Q{ - o] & V//

It is seen that the pressure drop roccompanying the disturbance results from the fact
that the projectile has accelerated and in turu each layer of gas has heen accelerated,
The quantitative value for this pressure drop from tho acocelerating projectile motinn
is given below., Qualitatively, the more quickly each la,er of gas muves into its
neighbor’' s evacuated space, the less is the pressure droy and the better able ls the
gas to push on the propellant. Thus, a good propellant gas wonld he one of lov
“inertia’ in this process of successive movement, t

During the entire movement of the profectile in the barrel, the projectile continues
to produce these rarefactions which travel toward the Lreech at the local velocity
of sound of the propellant gas. Consequently, the pressure of each layer of the gas
beéhind the projectile drops continuously as the projectile socelerates toward ihe
muzzle; in particular, the pressure of the gas layer directly behind the projectile
drops the most, since all of the rarefactions first truavel through this gas layer.

In & gun with no chambrage, i.e., a constant cross-sectlonal area gun, each layer
of gas similarly moves into the space vacated by its front neighbor until the layer
of gas next to the breech begina to move forward. The breech layer then begins to
move into the space vacated by its neighbor, but there is no neighbor behind it to
£i11 up the space it is vacating; thorefore, it is retarded in its motion and by so
doing leaves the space ahead into which it 18 moving somewhat evacuated. The neighbor
in front of the breech layer feels this slightly evacunted space behind it and so it
is retarded in its forward motion; this retardation of each neighbor in turn proceeds
toward the projectile, resulting in a progression of a rarefaction disturbance which
travels from the breech end toward the projectile end.

bt Lot |0 Fo - - = & o @

t 1t is shown below that the quantitative expression for the gas inertis is “ag”; for an ideal
lgas a0 1is inversely proportional to the initial sound speed for a given initial pressure
Bquation (11-3).
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Thiz digturbancs, which oilsinmtuo ut Lie breech end, 1s termed a “rerlected’” rare-

faction and is a result of the fact that there is a breech end. All of the rarefaction:
produced by the projectile reflect from the breech in this manner; they travel toward
the projectile, transmitting the information to the gas and the projectile that there

is a limited quantity of gas to fill the evacuated spaces. These reflected rarefaction:
lower the pressure of the gas through which they travel further than if there had been
no bresch. In particular, when these reflected rarefactions reach the back end of the
projectile, they lower the pressure behind the projectile; consequently, the projectile
velocity 1s not as large as it would have been 1f these refiected rarefactions had not
reached the projdctile.

A more complex phenomenon occurs in a gun with chambrage. In such a gun, as &
rarefaction traveling in the barre) toward the breech reaches the increasing area
section, the evacuated space is filled by gas flowing from B larger volume layer;
consequently, the pressure in the space is raised to higher value than if the gas had
moved from the constant diameter smaller bore layer. In turn, each layer of gas in
the transition section leaps into the space evacuated by the layer in front of it and
each tends to raise the pressure a little more than 1f they had been gas layers of the
same diameter as the bore. In effeot, therefore, the rarefaction impulses which are
produced from the back of the moving projectile when they come to the change of area
of the transition section are partially reflected as compression disturbances; these
compression impulses travel toward the projectile. Upon reaching the projectile they
raise the pressure behind the projectile, and therefore the projectile velocity, to a
value above that of a gun with no chambrage. 'Thus, the rarefactions produced by the
.projectile in a ohambered gun upon reaching the change of area section are partially

\ i ected as compression impulses and partially transmitted as rarefactions. The

tr smitted rarefactions continue their travel toward the breech still as rurefactious;
-at ‘the breech they are refleoted again as rarefactions and, at the transition section
of area decrease, a portion is reflected as a rarefaction and the remeining portion
continues its travel toward the projectile as a rarefaction. This sequence of events
continues as the projectile moves along the barrel.

In summary, changes in pressure of the gas behind the projectile ocourring in a
preburned propellant gun are these: (1) There is a drop in pressure from accelerating
projectile motion which is present during the entire projectile travel. .(2) There is
a drop in pressure caused, by rarefactinns reflecting from the breech which are present
in the latter stages of the projectile motion when these reflections reach the
projectile, (3) There 1s a rise in pressure from the compressions reflsoted from the
change in area section which is present during the entire projectile motion,

Rarefactions reflected Rarefactions from
from breech accelerating projectile
motion

Compressions reflected

\ from transition section

-~ > <
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Section 6

The Derivation of the Equations for
Disturbances Traveling in the Gas*

It is apparent from the discussion in Section 5 that changes in the gas are brought
about by the acoustic disturbances which travel in both directions in the propellent
gas, Although only infinitesimal chat.ges result from the passage of each disturbance,
fintte changes result from the passage of a multitude of these disturbances. Let the
changes wrought by a single infinitesimal disturbance traveling with velocity D into
a differential layer of gas in a constant diameter tube be examined. Let this layer
before the passage of the disturbance have a pressure p , a density o , and gas
velocity u ; after the disturbance passes the layer, these quantities are increased
by differential amounts as shown in the following sketch,

disturbance D
p+ dp Y /P P=p (x1)
u+du /6 u=u (x,t) =t
P+dp P A P=P (X,'I')
Gas Layer
—>» D
77777
Y pt dp//
[ u+ du t=t+dt
+ dp/
PLra

As indicated in the sketch, the layer of jas to be examined is traversed by the
disturbance in time dt . Thus, it is initially (D-u)dt long, and after passage
of the disturbance it is (D-u-du)dt 1long, as may be discerned from the next sketch.

.....éD

VV 7
pt+dp —> P b=t
Ddt "5 g

—& (ut+du)dt fe—~ > D

7 _

* See Appendix B for an alternate derivation.
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The mass of gas 18 therefore expressible in terms of the gas layer’s length before
or after traversal by the disturbance wave; hence
A(D -mpdt = A(D -u ~ du)dt (o + do) (6-1)

where A is the cross-sectional area of the tube.

During the entire time of passage of the disturbance wave a pressure of value
p + dp acts on the left end of the layer, while a pressure of value p acts in the
opposite direction on' the right end of the layer. Thus, the net pressure acting on
the layer is dp . The acceleration of the layer is the velocity change du experienced
by it divided by the elapsed time dt . Thus, Newton’s Law applied to the layer is

Adp = Ao(D - u)dt

_— . 6-2
[y JE— - dt ( )
net foroe mass accafgration
It du is eliminated from Equafions (6-1) and (8-2), one obtains
d .
@-m? = =, (6-3)

do

The assumption is here made that the infinitesimal changes which occur during the
yassage of the disturbance are isentrvpic (that is, reversible and adiabatic); thus,
the right hand side of Equation (6-3) 1s the square of the sound speed of the gas, a?

Equation (6-3) becomes
D-ucza
or
D=u+a . (6-4)

This disturbsnce is thus found to travel with the speed of sound relative to the gas.
Equations (8-2) and (6-4) may be combined to give

dp = aodu . (6-5)

This 18 the fundamental expression for the pressure change across & “u + a'"
disturbance wave.

In @ similar manner a disturbance traveling upstream could be analyzed. Such &
disturbance is shown in the following sketch.

D €
P p+dp
U (x,t) =t v -» utdu —»
P p +dp
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#wiil be fuuud Liwmi
dp = -modu (6-8)

across a ‘“u - a'* disturbance.

By examining the above equations one may determine the significant propellant gas
property which governs the magnitude of the pressure change due to the passage of a

disturbance in a constant diameter tube. Equations (8-5) and (6-6) may be rewritten
as

dp

(aodt) (du/dt)

(68-7)
dp

[}

—(aodt) (du/dt)

for the pressure change across & downstream and upstream disturbunce wave, respeotively.
The quantity *“ae”’ , the gas acoustic impedance or acoustic inertia, is the mass per
unit time traversed by a disturbance wave; it is thus properly identified as the inertia
of the propellant gas.

For small ap , the pressure change will be small to effect a given velocity change;
for large ap , the pressure change must be large to effect a given velocity change.
Thus, the acoustic inertia 8p of the gas is seen to be the fundamental gas property
which determines the magnitude of pressure changes required to produce given velocity
changes. It will be discussed further in Section 9.

For convenience, Equations (6-5) and (6-8) are usually rewritten in terms of changes
which ocour when traveling with or along the disturbance rather than those which occur
when traveling across the disturbance, Hence, since the change across & "“u + a”
disturbance equals the change along 8 “u - a&" disturbance, and vice versa, Equations

(6-5) and (6-8) become
dp +spdu = 0 (6-8)

along & “u + a" disturbance path,

it
o

dp - apdu (6-9)

along a “u - 8" disturbance path.

These equations aro known as the chare«ieristic equations; they permit a numerioal
solution to the interior ballistics »nrobt. o in the ocase of a gas flowing isentropioally
in a constant diameter tube. This :o.:nti.: 1<% possible because the infinitesimal

changes described in Equations (6-8) anrd ¢--¢. result in the finite changes which
ocour in the gas,
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Section 7

Summary of Equations Applicable to an Isentropic
Gas Expaniion in a Constant Cross-Sectional Area Tube

The meaning of the equations in Section 6, which apply to a gas which expands in a
constant cross-sectional area tube is discussed i1n Appendix C; the equations are
derived in a more rigorous fashion in Appendix B, It is assumed there that the gas
expansion is one-dimensional, Further, it is assumed that the flow is adiabatic and
reversible (isentropic), that 1s, that friction and heat-transfer effects within the
gas are negligible. (The irreversible effects are discussed in Part VIII.) These
assumptions have been shown to be a good approximation!’ 2 and permit a relatively
simple solution to the interior ballistics problem.

In Appendix B the one-dimensional momentum and continuity equations applied to a
layer of gas isentropically expanding in a constant dismeter tube are transformed into
the characteristic equations. These equations are there written in terms of the
“Riemann Function' o , defined as

do = (dp/ap)3 . . (7-1)

They are

du+do = 0 (7-2)
along the path of a characteristic line of slope dx/dt =u + a and

du -do = 0 . (7-3)
along the path of a characteristio line of slope dx/dt =u=-a . The u +a and.
u - a characteristic lines are thus the paths of disturbances. These equations are

the same as derived in the previous seotion. For consciseness they may be written
as (see Appernrdices A and C):

D(ut) 0
— o = .
Dt

Equations (7-2) and (7-3) may be integrated to yield
u + o is constant (1-4)
along the path of a disturbance traveling with speed u + a = dx/dt and

u - o 18 constant (7-5)

along the path of a disturbance traveling with speed u - a = dx/dt.
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Tne two sets of characteristic lines (disturbances) may be drawn in the xt-plane.
As explained in Appendix C, the u t a characteristic lines have a slope equal to

uta in this plane. Aleng each u *+ a characteristic line Lhe quantity u to
remains constant,

it A

vta

uta
/ DISTURBANCE

o I

X

DISTURBANCE

The characteristic Equations (7-4) and (7-5) may he applied to the gas expansion in )
any constant diameter tube (e.g., in the gun barrel or in the gun chamber) as f
demonstrated in the sectlona below. In particular, these equations, together with
the gas equation of state, may be direotly applied to a constant diameter gun,

In general, the solution of these equations is effacted numerically by progressively '
solving for conditions at the intersections of the u + a with u - a ocharacteristios
(see Appendix C and Appendix E). In speocial cuses a numerical solution is unnecessary
and the characteristio equations may be solved analytically. e {

Section B

The Characteristic Equations for the Effectively
Infinite Length Chamber, Do/Dx =1, PP Gun

A preburned propellant gun having a constant diameter chamber joined to a barrel of
the same diameter is considered. Before the projectile has begun to move the gun
appears as in the following sketch.

D

]
_l_ Chamber Barrel ,L

D Preburned b, =
© ] Propellont !

The— o —k N N

T O
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The fact that the chambor and barrel diometer are cgual is spocifiad he tha
Equation DD/D1 =1, Equations (7-3) and (7-4) may be applied to such a gun, \

When the projectile motion begins, a rarefaction disturbance is sent back with
the speed of sound (a,) into the gas behind it. The path of this disturbance is
shown a3 the line A-B-C in the following sketch.*

|

E

[ |

This disturbance reaches the back end at C and reflects, The reflected disturbance
is shown a8 C-D-E in the sketoch, As explained in Appendix D, the region A-C-E-A
is known as a “simple wave" region. Because no reflected disturbance reaches this
reglon, the entire region is desoribed by the equation

du +do = 0
or equivalently
du + dp/ao = 0 . (8-1)
I'I'his becomes upon integration
u+ fdp/ap = 0 (8-2)
or in terms of o,
u+o = o (8-3)

0

where u is taken to be equal to zero at p = p, and o=o, .

A gun whose chamber length X, is sufficiently long so that the first reflected
wave C-D-E does tiot reach the projectile before it remches the end of the barrel is
termed as “infinite chamber length gun' or an “effectively infinite chamber length gun”,

* Ususlly in an x-t plot, as in the sketoh, the projectile path is drawn as a single line
which aotually represents the path of the back end of the projectile.
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a gun is unaffected by the presence of the back or breech end; the projectile
performance is the same as it would be in & gun whose chamber length were truly
infinite. Thus, the gas behind the projectile in an intinite chamber length gun is
characterized by Equations (8-1), (8-2), and (8-3).

Section 9

Role of the Acoustic Inertia in the
DO/D1 =1, X, =®, PP Gun

In Section 6 it was noted that, for the expansion of a gas in a tube, the acoustic
impedance ap plays the role of the inertia of the gas. For the x = ®, DO/Dl =1,
PP Gun the acoustic impedance may be dirsctly related to the pressure drop behind the
projeotile.

Thus, Equation (8-1) desoribes any part of the gas behind the projevtile in an
X, =®, Do/D, =1, gun; it may be rewritten as

dp = -aodu . ' (8-1)

(This is in contrast to the situation in a PP gun which has DD, =1 and

X, not equal to ®, for then Equation (9-1) only applies to ‘“u + &' disturbances.)
From Equaetion (9-1) it is apparent that, when the velocity increases behind the
projectile, the pressure decreases. Moreover, Equation (9-1) indicates that the drop
in pressure for a given velocity inorease is directly proportional to ao . Thus,

in this unsteady expansion process the measure of the propelling gas inertis is ao ;
the drop in the pressure of the propelltng gas (and, in particular, of the gas
directly behind the projectile) is a direct result of the gas inertia so (and an
inevitable result unless ao can be made zero).

Equation (98-1) may be integrated to yield for the DO/D1 =1,x, =, PP gun the
velooity of the gas at any point in the flow

Po g
u =f 2. (8-2) .
p % )

It is seen that the velooity of the gas expanding from rest at initial pressure p,
in a DO/D1 =1,x, =ao,PP gun depends only on the acoustic impedance as a function
of pressure for the isentrope.

P LCDVV Qo
N
,c;ff o

V ——p

For a Dy/D, = 1, x,=®, PP gun the relationship between 80 and p determines the
entire propellant performance,
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Qaection 10

The Equation for the Projectile
By application cf Newton's Law to the projectile one obtains

dup
M- = g, (10-1)

where p. is the pressure directly behind the projectile snd u_ is the velocity of
the projectile. The barrel is here assumed evacuated and the frfctional forces on the
projectile gre assumed negligible, .

Section 11

The Equations for an ldeal Propellant Gas in a
PP Gun With D,/D, = 1. X, =

The words “PPIG Gun” designating “Preburned Propeilant Ideal Gas Gun’” refer to a
PP Gun with an ideal gas propellant.

An ideal (or perfect) gas is here defined by the following thermal and isentropic
equations. (See Appendix J) '

p PRI _ (11-1)

p = %ypy ‘ (11-2)

where the subscript “o* 1ndicnte§ the in{tinl rest state from which the gas
expands, The acoustic impedance becumas, for the isentropa

ol y4)

2y by
w = 1, /1(.9.) - m(z) . (11-3)
RTU Do “o \po

The sound velocity may be expressed for the idenl gas us

. fir
R L (11-4)
P m

and the Riemann funotion is calculated to be

O B e (11-8)

where o 18 taken to be meroat & = 0.
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The gun is shown in the following sketch just before the projectile 1s released.

D
M ]
34 y
7
Do po'Po' ao')’ P‘=°
T_ r-—’ X T
€ X0 = L
Do/Dl=1

From Equations (8-2) and (11-3) the pressure may be related to the velooity for the
expansion of the ideanl gas in a constant diameter gun

2y
N .
2. /h- - . (11-6)
D, 2,
71

In the limit of 7y =1, this squation assumes the form

2o eumg (11-7)
P

Equation (11-8) im the pressure-veiocity (p-u) relationship for an ideal gas
expanding 'in 8 D/D, =1, X, =, PP Gun. It is an important equation in that it
provides an insight into the faotors determining the value of the propelling pressure,
It applies to each part of the expanding gas; in particular, it applies to the gas
behind the prujectile,

Immedintely apparent from Equation (11-8) is the fact that the maghitude of the
dimensionless pressure p/p° primarily depends on the magnitude of the dimensionleas
velooity u/a, » For low speed guns, in which u/aD «<1, p/p0 is nearly one, and
the preasure drop is negligible. For high speed guns, the drop is seen to be
devastating,

The effect of < on the pressure drop is evident from the plot of Equation (11-8)
for varying < . 'This plot is shown in Figure 1 and in the upper sketoch on the
following page. It is noted from the plot that the lower the <y the less is the
pressure drop, but the pressure drop is still present even when -y is equal to one.

As indiocated before, of greater influence on the pressure drop is the gas initial
sound speed o, . This is apparent if a plot of p versus u is made from
Equation (11-8) for various initial sound mpeeds, Buch a plot is shown in the
lower sketch on the following page.

| e ——— - | d
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0
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o
\
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The higher the initial sound speed, the lower is the pressure drop. (This conclusion
conld have been arrived at by noting frow Equation (11-3) that the acoustic impedance
(which deiermines the pressure drop) of the ideal gas is inversely proportional to
the initial sound speed.) Thus, for an ideal gas expanding in a D,,/D1 =21, X =0,
PP Gun, a gas with m high initial sound speed is required to minimize the pruasure
drop. If the initiel sound speed is infinite, there is no drop in the preuure of the
gas as itms velocity increases.
. ‘ .

It is seen from Equation (11-8) that the pressure drops to & value of zero when the
ges velooity reaches a value of 2u./(y~-1)* This velocity is terued the “escapy
veloolty",

2
u esn = -(7—_—1-)- 8, (11-8)

for a DQ/D1 =1, X, =0, ideal gas expansion in & PP Gun. A gas, upon expanding
to this velooity, can push no more since its pressure haz dropped to zero. The
oscape velocity is one measure of the merit of a propellant gas; however, from
Equation (11-6), which may be rewritten as

* For the limiting case of & ¥ = 1 gas, this quantity the “escape velocity”, is infinite, as
may be seen from Equation (11-7) or (11-8).
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2
P u !
P _ /. Y (11-9)
) Ugae

it is seen that p/pO depends on 7y as well as | P

More insight into the relative roles of the propellant gas initial sound speed and
specific heat ratio is provided by plotting p/po from Equation (11-68) as a function
of uoﬁyu . This plot is shown in Figure 2 and in the following sketch.

|

do
st S
yu

This plot is nearly a single curve for all < values* with the equation

2o /e (11-10) -
P, ,

epproximating all the <y ourves. Hence, the pressure drop ocourring at s given
velooity may be thought of as‘depending essentially on the parameter a,/y ; the
greater this parameter. the less is the pressure drop for a D /D =1, x,=», PPIG
Gun,

Since an increase in the gas initiasl sound speed is more effective and is more
easily effeoted than & decreass in the specific heat ratio, a propellant gas with a
high &, has been smought. For the ideal gas the mound speed is proportional to the
square root of the temperature divided by the molecular weight. Thus, by the above
oonsiderations of the preburned propellant D o/Dy = 1, Xy =@, gun one is led to use
as a propellant gas a low molecular weight gas. sueh as hydrogen or holium at
elevated temperatures,

* That this plot should be nearly a single curve results from tha fact that a weries expansion
of Equation (11-8) reveals a dependence of p/p° only on yu/a; tor low values of 7u/a°
and from the faot that, at high values of ~u/a, , D/Do becoaes zero at values of tolyu
which are nearly the sume, Also note that, for au ideml gas l

|
!

yél
1 v .
[ ] p P
0 p/po o] )

the integral of whioh is only weakly dependent on vy .
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Section 12

Tue Equations for the Motion of the Projectile
Propelled in a D,/D, = 1, x, = ©, PPIG Gun

The behavior of a projectile propelled by an ideal gas in a DO/D1 =1, x5 5w,
PP Gun may be obtained by inserting the expression for the gas pressure (Equation
(11-8)) into Newton's Law for the projectile (Equation (10-1)). 1If this is done, and
the integration performed, an analytic expression is obtained for the distance
traveled by the projectile as a function of the projectile velocity.

2 7+l [1 up(')"'l)]

DA X 2 y -1 - v-1 2a
OM12D Ty : (w-x)/(yo—x) (12-t
8 { - Up(y=-1)
2,
or
A x u
Dotk a“n/‘<_v - 1> ‘1 (12-2)
Mal a

for a y=1 gas, (See References 3, 4 and 5.)

Equation (12-2) is plotted for different values of < in Figure 3 and in the
following sketch,

Y=1
T PPIG Gun
=1.4 Ko ¥
" r="1. D,/Dy =1
p .
N
Y=5/3
poAl *p
a——
Maz°

The ordimate in this figure is a dimensionless projectile velocity, u./a, : the
abscissa is the dimensionless distance traveled by the projectile, DP.A xp/Mal .

. It is noted from the Equation (12-1) that, &s p A x /Mag becomes infinite,
up(')/ - 1)/29.0 approaches one, i,e., the projectile velocity approaches the escape
velocity, However, in praotice the projectile velocity is rarely, if ever, more
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than one half the escape speed*. This is a consequence of the fact that at the high
projectile speeds the propellant pressure p becomes 30 low (see Equation (11-8))
that gas and projectile frictional resistance and sometimes the gas pressure in front
of the projectile, neglected here, equal the propelling gas pressure force, The
effects of friction mnd gas pressure in front of the projectile are discussed in
Section 40.

A most useful presentation of Equation (12-1) may be obtained by plotting the
dimensionless projectile velocity u /uo versus dimensionless initial sound speed
a,/yu, . The quantity u,, defined as /(ZpoAx /M) , 1is the projectile velocity
attainable if the projectile is propelled by a constant pressure b, . This plot
is shown in Figure 4 and in the following sketch.

T T PPIG Gun
UP X g =00
T, y=5/3 Do/Dy= 1
a
=
Yy,

It is seen that this plot is nearly a single curve for all 7 valuest.

The ordinate up/u0 may be thought of as an efficiency of the propellant gas in
its ability to maintain the pressure behind the projectile at a value equal to D, .
(Note: up/uo = B/py.) It is seen that this efficienoy is high for high dimensionless
sound speed and low for low dimensionless scund speed. Thus, the propelling pressure
is only maintained at a high level by an ideal propellant gas when the initial sound
speed is high.

Figure 4 illustrates the basic facts about a D./D, = 1, X, = o, PPIG Gun, The
projectile velocity for a gun of given geometry (of given AL/M) and initial propellant
pressure p, is o function of essentially a,/y only. A relatively high velocity
requires a relatively high a,/y . Moreover, a high efficiency (u,/u,) requires a
high value of a /yu, or a low value of yu /a, (as seen by the gnclined lines of
constant yu /a, in Figure 4). Since the projectile velocity mainly depends on
a,/y , the effect of a decrease in 7y is seen to be the same as the effect of an
incresse in initial sound speed a, . Both change the ratio a,/y by the same amount,
By the same token a decrease in ¥ may be compensated for by that decrease in a,
which would maintain the ratio ao/y the same.

* The velocity of the driver gas in a shocktube in which the initial driven gas pressure is made
us low ua possible will approach more closely the escape speed.

{ That this plot is nearly & single curve for a!" v values follows frow the fact that pp/p0
is approximately a function only of ao/yup (see Equation (11-10))
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Since the value of <y for iderl gases may be altered relatively little (from
¥ = 5/3 toy = 1), and not as desired, the ratio a,/y is practically increased only
by increasing the sound speed 2, : in this way high projectile velocity is obtained |
in an x, =, D,/D, = 1, PPIG Gun,

Section 13
The Finite Chamber Length, DO/D1 = 1,PP Gun

If the length of the chamber is not effectively infinite, disturbances originating
at the projectile reflect from the back end of the chamber, and subsequently reach the
projectile (see Appendix D). Before these disturbances reach the projectile the
motion of the entire gas 1s described by the simple wave relation, u + o = o4
However, after reflections reach the projectile, the gas expansion is no longer a
simple wave expansion, and the sum of u + o may be shown to be less than oy
Then, the equations which must be used arv the characteristic equations (7-4) and
(71-5) rewritten helow. :

u+¢ = aconstant (13-1)
for lines of

dx/dt = u 4+ a

u-o = aoonstant (13-2)
for lines of '

dx/dt = u-a

The gas equation of state relations are, for the isentrope,

p = e {13-3)
B = a(p) for a glven entropy (13-4)
o = oo (13-5)

and Newton’s Law for the projectile is
M—L = pa, (13-6)

The solution of these equations in the finite chamber length, constant diameter,
gun cuse requires a numerical step-by-atep procedure which can be done by hand
computing, as outlired in Appendix E.

Obtaining the chamber length x, necessary to be effectively infinite requires a
caloulation of the path of the first reflected impulses. For a PP Gun of constant
diameter with an ideal propellant gas, Heybey® has obiained an analytic expression
for x, as a function of the velooity of the projectile (uplst) at which the
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@ « Projectile Path
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first reflected impulse reaches the projectile, This may be transiormed to yield
PohA X, 2 1 :
= - 3-7
2 otz ~ L (13 !
Mao Y+ 1 1 - upl!t(y 1) ;
2e,

which for < =1 becomes

.po_Al;..o. “pllt/alo -1 (13-8)
Ma?
7F— —_——— e
Up =
?‘.\\\ 1st
\&Q SLOPE OF PROJECTILE
P 1gt o) PATH AT x_ =
03% P p]sf
X
' X
1 SIMPLE WAVE
REGION
Xo
FIRST REFLECTED DISTURBANCE

From Equation (12-6), and from the projectile u_, versus x. relation of Equation
(12-1), x, may be plotted as & function of the distance traveled by the projectile,
Xpiat ' when the firet reflected wave reaches it, This is done in Pigure 5 and in
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the following sketch, from which it is noted that XDlnt/Xo is proportional to Xg
From the figure

Xp1gt . 9 B PoA X,

X, Ma2 (13-9)
X
Plst ~ 2.5 __F’oA'lxo
X 2
o M ay
I y=1
ot
Xo Y=5/3
Po Ay %o
M ofi

The disturbances reflected from the back of the chamber “transmit’ the information
that there is & finite quantity of gas in the chamber., The effect of these reflected
disturbances is to decrease the pressure behind the projectile below that which it
would be without reflections; thim is illustrated in the tnllowing sketch, which is a
plot of the pressure behind the projectile as a funotion of projectile velooity.

Up_...’

This plot can be redone in terms of dimensionless pressure p /p, versus dimensionless
velocity u. /e, . This is shown in the sketch on the following page. Each

dimensionless chamber length pquo/Mug would have a difforent pp/po versus up/a0
ourve after the first reflection has reached the projectile. It is noted from these
sketohes that each time the refleotion from the back end of the first reflection
reaches the projeotile, the pressure-velooity plot has a discontinuilty of slope.
However, a velocity-travel plot of the projectile is found not to have an obvious
discontinuity of slope.

e
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Pp = infinite
Po
Po Axo
2 = finite
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In the case of an effectively infinite length chamber the performance of the
projectile may be expressed in terms of dimensionless projectile velocity (u,/a.)
versus dimensionless travel distance (p Ax /Mal). In the finite length ohamber
preburned propellant gun, a numerioal solution may be calculated for each
dimensionless chamber length (X, = poAxo/Mag). Thus, a dimensionless velocity
versus travel plot for varlous dimensionless chamber lengths may be obtained.
Such a plot is shown in Pigure 8 for a 7y = 1.4 gas. The points where the finite

X, ocurves depart from the x, = w ourve may be calnulated from equation (12-7)
or ohtained from Figures 3 and 5.

Classically, the dimensionless parameter G/M where G 1s the mass of the gms
in the chamber, has been shown to be an important interior ballistics parameter (see
Appendix F). The dimensionless chamber length iu may be transformed into the
dimensionless mass ratio G/M by the relation

PA X, o

¥ =
Ma} ™

0 (13-10)

PPIG Gun
D/Dy =1
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Xo =@
%o =3
v —
1&; Xq = 1
=, = 0.1
PPIG Gun
Do/D1 = 1, xo#
s, ___= 2 ____’
A \ XP PoAxp/Mdo

where the ideal gas relation 7p /o, = ag has been used. The performance curves for

a finite ohamber length gun now take the form shown in the following sketoch.

G _
M 00
G _ 10 PPIG Gun
N M DO/D] =1
Yp y S -9 Bhat
— M -
9

PoAl xp/M ag —b

A.plot such as this is given in Figure 7 for the 7y = 1.4 gas. Other plots for
different < values are given in the D,,/Dl = 1 plots of Figures 20 and 21, Hencs,
the behavior of & projectile propelled by an ideal gas in a preburned propellant

gun with constant diameter and finite chamber length is fully specified by the plots
in these figures*.

¢ These plots are the results of numerical caloulation using the characteristic equations above
and are further described in Part V.
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PART 1V. THE CHAMBEREDP PREBURNED PROPELLANT GUN

Saction 14
Qualitative Discussion of the D,/D, > 1, PP Gun

The chambered gun consists of a chamber joined to a smaller diameter barrel, as
shown in the following sketch.

Transition section

may be abrupt or gradual Dy

..T__
j: PorPo

4
— | —

In conventional ballistios orloulations chambrage is treated by assuming that the

actual chamber can be replaced by an equal volume imagined chamber of cross-seotional

area equal to the bore cross-sectional area (see Special Solution disocussion

l in Appendix F); thus the performance of & gun is considered only a function of the
gas to projectile mass, G/M, and is not dependent upon the geometry of the chamber.
That this is not & valid procedure is evident from the discussion that follows.

It seems reasonable that the greater the chambrage of a gun the greater is the
proportion of the rarsfaction (which had previously come from the projectile) that is
reflected at the transition section as a compression. One may oconsider that for an
infinite DO/D1 gun no part of the reflected rarefaction produced from the
projectile will be transmitted through the transition section as a rarefaction; all
of it would be reflect as a oompression moving toward the projectile.

The length of the chamber, L P determines the time taken for rarefactions to
reflect from the breech; the smaller x, 1is, the more quickly the reflections reach
the projectile and tend to lower the projeotile velocity. Also, the smaller the
X, the more quiockly the rarefactions travel back and forth in the chamber and lower
the pressure in the chamber

Henoe, one concludes that increasing either the chamber length x, or the chamber
diameter D, will increase the projeotile velocity. However, increasing D, provides the
opportunity of increasing the projectile velocity to a greater value than by increasing
Xg 4 this is seen from the following example: With infinite x, and finite D, equal
to diamoter of the bore, the projectile receives neither reflected rarefactions nor

compressions. However, with infinite D, and finitse X, the projectile receives
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only compression impulses and as a result the projectile velocity is greater than
in the finite D, infinite x, case,

It will be shown in Section 28 that the numerical results for chambered gun
performance with an ideal propellant gas indicates the following:

(a) For PPIG guns with equal G/M, the larger the chambrage, the larger will be
the projectile velocity in the initial stages of motion (before a number of
reflections have occurred between breech and projectile).

’ (b) For PPIG guns with equal G/M, in the latter stages of motion (after a number
of reflections have occurred), the projectile velocities will be approximately
the same for all guns, no matter the value of the chambrage.

come from the breech), the greater the chambrage, the greater will be the
projectile velocity for PPIG guns.

{ : {c) In agreement with (a) for an infinite value of G/M (in which case no reflections
t Section 13

The Gas Dynamics Equations for a Chambered PP Gun
In order to deotermine analytically the behavior of the expanding propellant gas in
a ochambered gun, the assumption is aganin here made for convenience that the flow is

P isentropic (see Section 40 for the non-isentropic case)

_ The previously derived cne-dimensional oharacterist;p equations are applicable to
! the constant diameter chamber and are applicable to the constant diameter barrel,

D(v £ o)
} ) ot = 0 (15-1) ‘
P Transition

Section Equation ?

Chamber Barrel R\%

’ D(uia)_, \—5—-10(”;-"’ -0

Dt

The gas flow in the transition section, which joins the chamber to the bore, is
aoctually & two-dimensional unsteady flow, However, it is not feasible to solve the
two-dimensional unsteady equations. There are two possible approximate methods of
treating the flow through the transition section. The first method is to assume that
the change in area from the chamber to the barrel occurs gradually so that the flow
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may be assumed to be one-dimensional. Then, the one-dimensional characteristic
method can be applied to this change in area section. The characteristic equations
become, for the change in area section,

s 2 ) L (uto) + (' T a) ° (u & o) Fhu (156-2)
————— = se—— u o = n— S— -
Dt ot ox * A dx

where u 1s the gas velocity, a is the sound speed, o is the Riemann function,
and A 1s the oross-sectional area of the gas layer at position x in time t

(For the derivation and application of these equations see, for example, Reference 5,
68, 7T or 8.) These equations require a tedious numerical procedure to solve, and are
generally not suitable for hand computation. It is to be noted, however, that the
quantity u t o, in contrast to the constant diameter case, does not remain constant
for disturbances in the trnnsitipn 3ection,

The second approach, and one chosen to be employed here as being more convenient
and a good approximation to the actual situation, is to assume the following: At any
given time the rate of change of mass and energy within the transition section is
negligible relative to the differences between the exit und entrance fluxes of these
quantities; thus, the changes due to variations of time are assumed negligible relntive
to those due to the variations in position within the control volume. This assumption
is made clear by taking as a control volume the transition section as shown in the
following sketch,

—x K—°

CONTROL VOLUME

Then the applicable equations® of oontinuity and energy are, respectively*

ot

(3E> = [(h + u? >(puA)] [(h + Ei) (puA)] (16-4)
ot con Vol &) [} 2 i

* Although it is not assumed that the flow within the transition section is necessarily one-
dimensional, it is assumed that the flow at the entrance and exit planes of the transition
section is one-dimensional.

om
— = (ouA), - (oud), : (15-3)
Con Vol '

and
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where m and E are the mess and internal energv in the transition section. Ry
our assumption above, the two unsteady terms on the left hand sides of Equations
(15-3) and (15-4) are negligible,

It is to be observed that, if the transition is rather sudden, the control volume
1s small; hence, the unsteady terms on the left of these equations bein] proportional
to the magnitude of the control volume, are necessarily small: thus, ir the case of &
sudden transition, the assumption above is automatically valid.

With this assumption the equations which are apnlicable to relate the conditions at
the entrance of a transition section to those at the exit of the transition section are
the quasi-steady equations of continuity and energy. Thus, at each instant of time,
the applicable equations are

2

ug vy

hy +—=~ = hy +-= = function of time (156-5)
2 2

PlAe = pu4A; = function of time (15-8)

Bince the flow has heen assumed isentroplc, the thermodynamic relation between
enthalpy and pressure is

dh = (dp/p)g (15-7) .
and
P
hy -h, = J’p: do/p . (18-8)
Equation (15-8) becomes
u? - y? )
L %e = 7 app. (15-8)

It is shown in Reference 9 and may be shown from Equations (185-3) and (15-4) that
the use of the quasi-steady flow equations tn desoribe the gas flow between the chamber
and barrel of the gun ylelds & larger projectile velooity than would be yielded by the
use of the actually applicable unsteady equations. However, experimental results
from a ohambered preburned propellant gun by Seigel and Duwson'® have demonstrated
that the difference was sufficiently small as to be unmeasurable. These experiments
were made with a gun usini room temperature alr at about 3,000 1b/in? as a propellant.
The gun had 8 0.%0 in diameter barrel which could be joined to various chambers of
varying diameter up to 2.5 in. The chambers were joined to the barrel by means of a
30° half-angle taper®, The projectiles were one-gram plastioc projectiles which were
sheared by the compressed air in the chamber. A schematic of the gun system is shown
in Pgure 8(a). 1The measured projectile velocities were compared to the theoretically
predioted velocities based on the use of the quusi-steady eqations above, (These
theoretically predicted velocities will be discussed below.) The comparison is shown
in Figure 8(b), It iv observed from the figure that the quasi-steady flow approxima-
tion in the transitinn section yields good agreement with experiment.

* The experimental results, based on one test with s 902 half-angle taper, sesm not to depend
on the magnitude of the angle of taper.
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Tha follnwino akatnh shaws tha charantariatica diagram fovr a chamharad PP fiun

t —

Characteristios may be drawn in the transition section hy feiring them from the
known conditions at the inlet to the known conditions at the oexit. The simple wave
region in the chamber for which u + o = o, 1is denoted by the letters A-B-C .

With Equations (18-1), (15-8) and (15-8) and the isentropic equation of state of
the gas, it 1s possible to calculute Quantitatively the behavior of the projectile
in a preburned propellant chambered gun.

Section 16

Demonstration of the Advantage of Chambrage
for the PP Gun with x, = ®

The preburnsd propellant guns to be compared are a constant diameter gun and a
chambered gun, both having infinite length chembers. It has been shown that, for the
X, = o oonstant diameter PP gun, the sum u + o is always equal to a constant value,
o, . However, it will be shown below that for a chambered PP gun with x, =, the

sum of u + o behind the projectile is greater than o, ; consequently, the projeatile

velooity is greater for a chambered gun than for a constant diameter gun,

Let us examine & chambered PP gun with x, =, BSinoe the chamber is infinitely
long, there exists a simple wave region in the chamber, Hence, u + o = o, 1in the
chamber, and, in partiocular, at the entrance to the transition msection position ‘o',

U, +o, = o, . (18-1)

[ [} 0

Within the transition section at any time the quasi-steady flow equation applies,
which becomes in the differential form

udu = -dp/p . (18-2)

amatn e b . .
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The differential change in u + o in the transition section is, from the definition
of o and from Equation (18-2),

dp
d(u +0) = du+do = du + =~
ap
u
= du< —:) = du(l ~ M (16-)

where M 18 the Mech number in the transition section.

Equation (18-3) demonstrites that u 4 ¢ increases in ths transition sestion,
sinoe the flow there is always subsonic., Hence, at the entrance to the barrel, and
consequently at the projectile®,

(18-4)

Since o is a monotonic function of pressure, the greater the quantity u + o
behind the projectile, the greater will be the projectile velocity. It is thus
concluded that the projectile velocity in a chambered x, =o , PP gun will be greater
than that ina DD, =1, X, =, gun.

* The same result may be arrived at by examining the characteristic equations (18-2) which
apply in an area change.
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This result is true regardless of the equation of state of the gas.
It is noted that the veloclty increese in the transition section is
dp
uu = -— (16-5)
Je
This is in contrast to the expression for the veloocity increase in the constant
diameter, X, = @ , chamber flow which is
dp
du = ~-— (16-6)
. ap

It is thus seen that although & low “ac’’ as a function of p is desirable for
the expansion in the constant diameter, Xg =@, chamber, a low “¢" as a function of
p is desirable for the expansion in the transition section of such a gun. In the
case of an ideal gas, both ao and p sare inversely propcrtional tu the initiual
sound speed. Thus, the higher the initial sound speed, the greater will be the
projectile velocity in a chumbered or unchambered gun, However, in the case of a
gun in which the propellent behavior is ion-ideal, the performance is not specified
by the initial sound speed, as will be shown in Section 83.
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Section 17
The Special Case of the PP Gun with Infimite Chambrage

If the diameter of the chamber is infinitely large relative to that of the barrel,
the quasi-steady equation of continuity yields

A
=P e (17-1)

© P A,

Therefore, the gas remains virtually at rest at the entrance to the tranasition
section and its pressure, density, etc., do not change from their initial values.
Thus,

P = Do (17-2)
Py = Py (17-3)

fquatinn (15-9) for the barrel entry velocity becomes

2 »
u d

ht f° ® (17-4)
2 Py P

The unsteady constant cross-sectional area characteristic equations apply in the
barrel, so that, in partioular,

u, + ¢

Equations (17-4) and (17-3), with Newton’s equation for the projectile and the
equation of state of the gas, are sufficient to determine the behavior in this gun.
The characteristics diagram appears as sketched.

Slope of all
=00 characteristics =1 ag

_JL_ a = do t —p

In the chamber the gas remains substantially at rest in its initial state, and all
the characteristic lines there have a slope of + &, . Numerical computation need
only be done for the barrel section, and this fact simplifies such computation for
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Vi DO/D1 ~w , PF Gun, The lengih of tho chamber x,; Ifor this case nas absolutely
no influence, because by assuming infinite chambrage an infinite quantity of propellant
gas 1s assumed to be in the chamber,

Numerical results for this infinite chambrage case are given below.

Section 18

The General Equations for the Chambered
PP Gun with Effectively Infinite Length Chamber

As in the situation of a gun with no chambrage, a gun with chambrage may have an
“affectively infinite length chamber" (x, = @); in that case the chamber length x,
1s sufficiently long that rarefactions from the back end of the chamber do not reach
the projectile during its travel in the barrel.

‘*

X

P
i

0
<7

B

Thus, in the sketch, O-F-E represents the projectile path; the first disturbance
0-A-B , upon reflection from the back end, reaches the projectile at E . The region
in the chamber (A-B-C in the x-t diagram) where reflections have not reached is
therefore a simple wave region, entirely describable by the equation

utoe = oo, . (18-1)

In particular, this equation may be applied at the entrance to the transition section,
8o that

Ugt o, = T, . (18-2)

The conditions at (¢) may be related to those at (i) by the quasi-steady Equations
(15-8) and (15-9).

(Puh), = (puh), (18-3)
2 2
u u
Sth, = 71“'1 : (18-4)
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o . (18-5)

With the assumption that the projectile is unopposed by frictional forces or gas
pressure in front, the projectile motion 1s described by the equation

dup
M2 = APy . (18-6)

The equation of state of the isentropic expension of the gas may he expressed as

> = p©) )
p = po)
> for the isentropic . (18-T)
h = h(o)
a = (o) j

The complete behavior of gas and projectile in an X, = ®, PP gun may be obtained
from Equations (18-1) through (18-7).

Section 19
The Conditions at the Barrel Entrance in a /
PP Chambered Gun with x, = ®

Let the u - a disturbences coming from a projectile in a PP chambered gun with
Xog =@ be examined. As the projeotile velocity increases, the velocity u of the
gas behind the projectile increases, and the sound speed & deoreases. Thus, the
quantity u - a , the disturbance speed, inoreases. This is evident in an x-t
diagram (as sketched) by the increase in slope of the u - a lines,

X —»

v = alines
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As time elapses, the slope of the u - a disturbance 1ines at the harral
entrance approaches zero, i.e., the flow approaches the sonic (Mach one) condition.
As seen in the sketch, the slope u - a changes more and more slowly as time goes
on and tho flow approaches sonic; thus steady flow is approached with increasing time.

as t—>
Uiy —> aqj

\
/

Moreover, it is obvious from the x-t characteristics diagram that the slope of
the u - a disturbance coming from the projectile cannot be greater than zero at the
barrel entrance; if the slope of the u - a disturbance line would be greater than
zero it would not reach the barrel entrance but would travel away from it.

The fact that at large times the flow becomes steady and sonic in the barrel
entrance of an X, = , PP Gun is often used to approximate the flow at earlier times

(see Section 25).
Section 20

Equations for the x, = o, Chambered PP Gun with an
Ideal Gas Propellant

For the case of an ideal propellant gas the sound speed, enthalpy, pressure, and
density are simply related to the Riemann function (see Appendix I).

a = (y-1o/2 ' (20-1)
h = a¥/(y-1 = (y- 1o (20-2)
p = pylofoy) /D (20-3)
p = pylofoyd/ D | (20-4)

With the above relations, the general equations in Section 18 for"the x,=w,

chambered PP Gun may then be expressed in terms of the two independent variables, u
and o, as follows: '

(a) the simple wave characteristioc equation relating the conditions of the gas at
any point in the chamber with the rest conditions at the breech

uto = o (20-5)
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{U) Lbe abuve vquabion wpplied Lu Lhe conditiuns uf Lhe gas wi Lhe envrance to
the transition section

U, to, = U (20-8)

(¢) the quasi-steady continuity and momentum equations relating conditions at the
entrance to those at the exit of the transition section

@ /o) *") = A /Ay = Aguy/Au, (20-7)

ul/2+ (y - 1ol/a = ul/2 + (y - 1ol/e (20-8)

(d) the characteristic equations in the barrel
a (u + o) 0 (20-8)
—e(uto) = -
Dt
(e) and Newton's equation for the projectile acceleration
MEP. = pA, (o fo,) 2/ (1) 20-10
rrali PoA (O, /00) . (20-10)

From Equations (20-5) through (20-10), the entire behavior of the gas and
projectile can be computed for a PPIG chambered gun with an effectively infinite
length chamber., The actual numerical technique for so doing is outlined in
Reference 11. Discussion of the results of numerical computations of these equations
is given in Section 28. '

Section 21

Obtaining the Maximum Projectile Velocity (Eascape Velocity) for
the Chambered PPIG Gun with an x, = 0 Chamber

By the use of the equations presented in Section 18, the maximum projectile
veloocity (which is the same as the escape velocity) can be obtained as a funotion of
the ratio of chamber diameter to barrel diameter. In an Xy = PP Gun, the maximum
projectile velooity is attained by an unopposed projectilv in the limit of infinite
travel in the barrel, for then the propelling pressure be 'mes zero, Although this
velocity is an idealized limit, it is instructive to see the effect of chambrage on
this limit. .

As the projectile velooity increases in the chambered gun with infinite chamber
length and infinite barrel length, steady state conditions in the transition section
are approached, and the velocity at the exit of the transition section approaches the
local sonic velocity*. When the projectile has reached its maximum velocity (the
esoape velocity), the propelling pressure bshind the projectile will have dropped to

* As pointed out in Seotion 19, the maximum velooity with which gas can issue from the chamber
into the barrel of a PP chambered gun with X, = @ is the local velooity of sound,
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zero; at this time steady state conditions will exist in the transition section, and
the gas will be flowing into the barrel at sonic speed.

%= ____-_____-‘_44””}———————————-xp==00 "-4 }—“"-—-44

Thus, the steady flow Equations (18-3) and (18-4) will exactly apply, and, in
addition, the velocity at the transition section can be equated to the sonic velocity
without approximation. Therefors, for the case of the ideal gas propellant, the
equations which apply at this time are the following:

I
Continuity: @ /o) ¥ = an /A, (21-1) '
Energy: ul+ (y-noY2 = ul+ (y-nol/2 (21-2) _
Sonic condition: uy = oay o= (Y- Ho/2 . (21-3)

All of the quantities in these equations are for the time when the projectile velocity
is a maximum.

As the chamber is effectively infinite in length, Equation (20-6) can be applied

to the gas in the chamber at the entrance to the transition section at this time.
Ug+0y = 0y . (21-4)

To determine the escape velocity, the impulses traveling downstream from the transition
section toward the projectile may be examined. For each of these impulses the quantity
u+o is a constant (by Equation (20-8)), a different oconstant for each impulse,
equal to Uy oy, since they travel from the exit of the transition section. When
the projectile is traveling at escape speed, the pressure of the gas directly behind

it is zero, and hence the Riemann Function o of this gas, by Equation (20-3), is
zero, Therefore, at this time

Uggo = (W + D prgjectile = UYpt0p = Uy + Ty (21-5)

where Ugug is the projectile escape velocity. From Equation (21-3), the escape
velooity becomes

" rY+1 Y+1
= 1Y =
880 vl i 2

Fron Equations (21-1) through (21-8), the relation between the escape velocity
and the ratio of chamber to barrel cross-sectional area (or chamber to barrel
diameter) oan be obtained for the infinite chamber length gun.
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= -1 =
i:_j_ = _g% = __’y_i_l_:sc — 4 |— .2 ;9_5;’ . (21-7)
1 +/(_3'> ("Tesc - 1) [ "'.;,-: (T)(ﬁ:ac - 1)
where T, . 1s defined as
Boso © Z_;._ff_;’l:.‘l . (21-8)

For a propellant gas of 7 - 1.4, the projectile escape velocity is plotted in
Figure 9(a) as a function of DO/D1 as calculated from Equation (21-7). It is evident
from Equation (21-7) that, as expected, the escape velocity for an infinite chamber

length, constant diameter gun r,l)u/D1 =1) is 230/(7-1) or, dimeng_ionlessly. 59“ = 1.
Further, it is seen that, as DO/DL spproaches an infinite value, ﬁe“ approaches
the value of (¥ + 1)/2, that is, Uggg becomes
_ |7+ 1 28
Ugpp = - “""‘7_1 . (21-9)
It is noted that the increase in escape speed between chnmbrage and infinite

chamorage is &

N g.\'\_;._:.

- - Y+ 1 29.0
Bugyewy = Yeso(D,/D,*») ~ Yesc(D,/D,x1) 2 1 . (21-10)

v-1
which in the limit of ¥ =1 , becomes equal tov 0.5 8, . Caloulation yields the
taut that the uncrease in escape speed is approximately equal to half the initial
sound speed for all gases with <y between 5/3 and 1. This is seen in the table.

Y - 1 1.2 1.4 1.6 5/3

A“uo(m) - 0.50 a, 0.49 a, 0.48 a, 0.47 a4 0.46 a

A plot of Au“c is plotted in Figure §(b) versus (D /Do) , the reciprocal of the
area ratio. This plot is found to be almost a single straight line for all 7 values
and is easily committed to memory.

The inorease of escape speed may be made dimensionless by dividing it by the
inorease of sscape speed for infinite chambrage. The resultant dimensionless quantity

e

R

is then the percentage inorease in escape spoeed.
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T 1/2 001
B gse _ T ALLY'S
PPIG Gun
Xo = [s 0]
0 Ao = 2
0 1 A/ As=(Dy/D, ) —b
Percentage increase in 2%
Ugso "":9"
Ugge = -—532!2- = T 2=l . (21-11)
Bugys () Y+ . 2a,
2 (y-1)

A plot of percentasge increase in Uyyo Versus (D1/Do)2 for different /s 18
presented in Figure 10. It is seen that nearly a single curve for all ‘y values
represents this percentage; it 1s practioally independent of v .

Section 22

Discuasion of the Projectile Velocity Increase
in an x, = ©, PPIG Gun Due to Infinite Chambrage

The result of caloulations, as outlined in Reference 9, for the case of & ¥ = 1.4
ideal propellant gas in a gun with infinite chambrage is shown in Figure 11; here,
projectile velooity is plotted as & funotion of projectile travel. On this same
figure is given the result for an X, = o, PPIG Gun of dismeter ratio one
(calculated from the analytic expression of Equation (12-1)).

From this figure it may be seen that the velocity inoreasse due to chambrage (4u,)
increases with increasing travel and very soon approaches a value equal to one half
the initial sound speed; at infinite travel the difference is exactly the difference
in escape speeds, that is,

_ _ Y+l 2&0
Aup = A“uo(m) = [ —- :l.;__i. ~ 0.58, (22-1)
for X, =,

A plot 1s sketched of Aup versus u./a, for the D,/D, =1 qun (all values at
each point on the ourve taken rPr the same pAL/Mad).
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| =
Au,
(P0o/py = IZPI=GLG4UN ?;f‘,g (@"‘)Q +3a0
- “PDo/Dy=1) o7
; | H o) s

The velocity difference curves obtained from calculations done for other values of
appear similar to this curve for the 7 = 1.4 propellant gas.

It had been previously noted that the performance of the x, =, conatant diameter
PPIG Gun depends essentially on the parameter a.o/'y (e.g., see Figure 4). Thersfore,
it is reasoned that the various Au, ourves for different 7y values may be brought
into near ocoincidence if plotted egainst yu /a, rather than u./a, . This turns
out to be the case, as seen from Figure 12, It is noted from this Figure that the
behavior of Qu, for all the ¥ ourves may be approximated as being linear at low
values of u,/a, and oqual to 0.5 &, at values of 'yup/no above about 3. By using
this approximation AuD versus 'yu‘,/ao appears as shown in Figure 13 and in the
following sketch*,

f

AYp .
increase in |
U, due to | NETE
infinite | b4
chambrage | 1/2 a, PPIG GUN
Xpo = 0
|
| , (Yup/ o) —
0 DQ/D] =1

3

It is meen that the effect of infinitely chambering an x, = 0 PPIG Gun is to
increase the projectile velocity by about n,/2 at the most.

* Charters (p.30, Reference 88) discusses a aimilar approximation.
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Section 23

The Projectile Velocity Increase for an x, = ®,
PPIG Cun With Any Value of Chambrage

From Figure 9 (or Equation (21-7)5 the diameter ratio
yield an increase in escape velocity midway between that

of the PPIG Gun which will
of the D,/D, =1 gun and

the D,/D, = gun may be obtained. This diameter ratio is found to be approximately
equal to 1.5 for any < propellant gas. The calculation of projectile beliavior for
a DO/D1 = 1.5 gun with a 7y = 1.4 propellant ylelds the result shown in Figure 14;

also shown in this figure are the results for a Do/Dz =

1 gun and a DO/D1 = o gun,

It is apparent from the curves of Figure 14 that the velocity of the DO/D1 = 1.5
gun is approximately half way between the D,/D, =1 and D,/D, =@ guns for all
values of projectile travel. Thus, the Do/Dx = 1,5 gun which yilelds an increase
of the escape velacity of 50% 1s seen to yleld approximately an increase of

projectile velocity (Au ) of BO% for all velocities. It

is thus postulated that the

ocurve of Figure 9 (or Figure 10), therefore, which applies to the percentage escape
velocity inorease, may be applied to the percentage velocity inmcrease of an

X, = , PPIG chambered gun at any projectile velocity,

Calculation confirms this

postulate. Figure 10 is thus replotted in Pigure 15 with the ordinate now labseled
aa the percentage velocity inorease due to any velue of chambrage versus the gun

diameter ratio squared.

t

AYp
AuF’oo
P T Y Doy =1 Y TP,

-
uF'Do/Dl = [Do/Di=1

|
:

0 1

ALLY'S
PPIG GUN

g = ®

0 (1/1.5)2
This ourve may be approximated by the straight line,

bu, = Adug (1 - (D/DY% .

(23-1)

With this equatlion the plot of Figure 13 may be transformed to yield the velooity

increase due to any value of chambrage at any velooity;
on the following page.

this {8 seen in the sketch
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To calculate the velocity of an effectively infinite length chambered gun, one need
only calculate the velocity of a gun without chambrage and add to this the value of
Au,. . Hence, any performance curve for an X, =, FPIG Gun with no chambrage
becomes ohe for a gun with chambrage if for the projectile velocity u, 1is
gsubstituted uy - Aup ..,

]
In this manner the plot of Figure 4 has been replotted in Figure 16 to apply to
the case of a PPIG chambered gun with an offectively infinite length chanmber,

Section 24

The Pressure-Veloclity Relation for the Gas in
an X, = @, PPIG Chambered Gun

The pressure-velocity relation for the gas directly behind the projectile in #
PPIG chambered, X, =0, gun may be obtained by reasoning similar to the above.
With the p-o relation for tho ideal gas, Equation (20-3), the pressure hehind
the projectile may be expressed in terms of the u + o behind the projectile,

2y/(y=1)
_p_p_ o (W toy vy
Po

0‘0 O‘u

which may be rewritten as

brsasrremnr s

1
gun

(24-1)

2y/(7-1)
P u .
Lz (1+e-L2 1
Do ( o (24-2)

0

where € is defined as

(24-3)

¢ Thio approximation will yield projestile velooities correct to within e few percent.
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For a 7 = 1 gas, Equation (24-1) becomes

Pp 2 gtr-um (24-4)

where r 1is defined as

r = P _'P "0 (24-5)

The sum u, + o, is equal to o, at the start of projectile motion in an x, =,
PPIG chambered gun; this sum approaches the escape speed at large values of projectile
travel at which time the gas velocity at the throat approaches sonic velocity. A plot
of u,_+ o, obtained from calculated results indicates a behavior which may be
approximated as sketched and as shown in Figure 17.

T

€
2 | T ALL 'S
t=(0V/Do) | {78 _, ~ o2 PPIG GUN
or 7 V7w Xo = ®
/ | o .5 FOR A 7=l gus
r / |
2
1 - (D1/D,) Y
| Yuy/a, —>
For | P/ °
A 1.5
Thus, Dy/p, = (1+€ = u /o) /") becomes
B} [7+1 o| Mp 7 =Duy [Z/OD )
Py = {1 *[ 5 ‘} [‘ - P00 ] 1os, TO‘E} (24-6)

for ’)'up/ao < 1.5, and

+1 p.\? -1 2y/(y-1)
Db, = {1+ {———7 Y B PR AT Bl (24-T)
) 2 D, 28,

for ')'up/a.o 2 1.5,

It is seen “rom the sketch that the approximation is made that the gas flow becomes
sonic at the oarrel entrance at a time which corresponds to a projectile velocity of
1.5 a,/v.
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ol IO -~ 10 n
Tf dasired the aynreaeion for nrojectile propelling nrassure, mguation {24 2},

with € from Equations (24-8) and (24-7) may be inserted into Newton’s equation to

calculate projectile velocity as a function of travel. However, the velocity-travel
relation for the X, = o chambered PPIG Gun #s more easily obtained as outlined in

Section 23.

Section 25

The Barrel Entry Sonic Approximation to Calculate
the Projectile Behavior in an X, =0, PPIG Chambered Gun

In an x, = w, PPIG chambered gun, the flow inta the barrel approaches sonic flow
with increasing time. However, for convenience in calculating the projectile
velocity-travel history, the approximation is sometimes made that the flow is always
sonic at the barrel entry. Thus, the equation for pressure

~1y] 27/ (y=1)
by . 1+E_u!('y 1)
28,

becomes

- —1y]/ (-1
D - [1 + </1f-- - ) (1 - a/ap -2 1)] (25-1)
Py 2 2a,

or, for the ¥ = 1 propellant gas, 1t beconmes

Pp . e[*( '%% ':ap'] ‘ (25-2)
Po

It is to be noted that, when Equation (25-1) is used in Newton's equation to
obtain the projectile velocity-travel relation, the result is precisely that obtained
for the DO/D1 =1 case (Equation (12-1)) except that for p, in Equation (12-1)
one substitutes

\
i A -72:"1
+
Py |l+ ,7—-—1 -
2 A,
and for a, 1in Equation (12-1) one substitutes > (256-3)
¥ A
8, |1+ /Z—--l 1 -2
2 0
L o J .

The plot of Equation (12-1) in Figure 3 or Pigure 4 may be applied to a chambered
gun by using the substitutions of Equation (25-3).
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The sonic assumption above gives a relatively good approximation for the
projectile behavior in an X, =, PPIG chambered gun. However, more accurate
results are easily obtained, as outlined in Seciion 23.

Section 26

The Calculation of the First Reflected Disturbance
in a PPIG Chambered Gun

The analysis above has been for a chambered PP Gun having a chamber length which is
effectively infinite (X, = w). Obtaining the magnitude of the chamber length necessary
to be effectively infinite in a PPIG Gun requires a step-by-step numerical calculation
of the path of the firat reflected disturbance. The cases of D /D, =1, 1.5, and
are here first considered. The Do/D1 = 1 case has bheen discussed in Section 13
(see Equation (13-7)) and the results are shown in Figure 5.

For simplicity in calculating the path of the first reflected impulse in the case
of the chambered guns, the length of the transition section between the chamber and
barrel is taken to be zero,

|E Yo l ABRUPT TRANSITION

Examination of Equations (17-1), (17-2), and (17-3) demonstrates that, for the
infinite chambrage gun (D,/D, = ), the velocity of the gas in the chamber section

is zero and the pressure, sound velocity, and other gas conditions in the chamber
remain constant at their initial values. Thus, the disturbances in the chamber
section travel at the initial sound velocity; the time required for the first impulse
to travel from the transition point to the breech and back (point P in the following
sketoh) is equal to 2x./a, .

|

SRR ——




49

Cach valuc of time slong the v - 0 lina (haginning af tha harreal) ohtained
from numerical results of the infinite chembrage calculations previously referred to
can be taken to correspoqd to the time at P . Then the velocity uy and position
Xpigt of the projectile when the tirst disturbance reaches it at Q can be vblained
from the infinite chambrage calculation by following the downstream impulse from P .
In this manner paths of the first reflected impulses for DO/Dl = ®© are obtained,

The resultant DO/D1 = ® plots are shown in Figures 18 and 19,

For the D /D, = 1.5 case, the characteristics equations can be applied in the
chamber section (where u + o = o) to obtain the path of the first reflected impulse.
From the points R and S obtained in the previously referred to D/D, = 1.5
calculation on the x = 0 1line (see following sketch), point T can bhe calculated;
from T and U the point V can be calculated, atc.

i
L

Point X, which specifies Xo » 18 the intersection of the downstream characteristic
R-T-V... and the first upstream impulse (of slope -2/(¥-1)). Since point Y on the
projectile path has been ocalculated previously, the first reflected impulse path is
completely known, In this manner the chamber length to be effectively infinite

was caloulated for the diameter ratioc equal 1.5 case,

The resuits of the three diameter ratios cealculations are shown in Pigures 18
and 19 and illustrate that the DO/D1 = 1.5 case falls again approximately midway
between the DO/D1 =1 and D,/D, = o ocases; therefore, chamber lengths necessary
to be effectively infinite for diameter ratios other than 1, 1.5, or infinity
may be calculated by interpolating the results of Figures 18 and 19 as shown in the
sketch on the following page (inverse area ratio interpolation).
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PART V. COMPLETE NUMERICAL RESULTS FOR THE PROJECTILE
BEHAVIUR IN A PPIG CHAMBERED GUN

Section 27
Calculations by Means of Electronic Computing Machines

The method of characteristics as outlined above may be numerically applied to
calculate the performance of a PP Gun system. However, in the cases where the
chamber is not effectively infinite in length, hand calculation becomes extremely
lengthy and tedious. Further, the accuracy of the calculated results depends on the
spacing of the numerical points. The greater the spacing, the greater the error;
hand calculation, psrticularly, does not allow small spacing and thus calcu}ating by
means of electronic computing machines offers great advantages relative to hand
celculatior., Not only is much time saved, but accuracy may be substantially increased.

At the present time there are two methods generally used by computing machines to
calculate the behavior of the projectile in m gun. The first is the method of
characteristics®® 5 glready discussed. The second method is & Lagrangian scheme in
which the gas is broken into small layers to each of which is applied Newton’s Law. ’
The pressures acting are assumed to vary negligibly over a small time interval during
which the calculation is made to determine the movement of the sides of each layer.
The movement of the sides of each layer determines the new volume for each layer and
therefore the new pressure for each layer

i | ' i 5
u
t | P P2 b Py My—=2 = (P, -DpA
L Y= Vi~ Uy e 8
/] | [ [l
-p,)A(St
W= uy e O ;p( )
T e T ] ’
' ! ' - St 2
t+ 8', ) p" | p2l ' P3' | sz(c @) = u28t +-(_D_1_D_3_).i(_—)_
'L e —D} U3 —;} _ o M, 2

The process 18 then repeated determining the motion of the layers of gas under the
influence of the newly calculated pressures. The method also has Incorporated into it
an ability to take into account shocks., This scheme is based on the method devised
by von Newmann and Richtmyer*? !°, fThe application of this method to two-stage gun
caloulations is described in References 14 and 33. It is interesting to note that

the method 1s also applicable to the flow of solids and liquids as well as gases;
moreover, it can be extended to apply to unsteady two-dimensional problems.

Section 28

Numerical Results for the PPIG Chambered Gun

Calculations have been obtained by the use of both of the computing schemes outlined
above., The results may be expressed in terms of dimensionless plots similar to those

b
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variables. Thus, plot of dfmensionlesa projectile velocity versus projectile travel
for a given geometry (l.e., for a given D /D and given G/M*) has been found
convenient. The results of computations made for the US Naval Ordnance Laboratory at
the Naval Weapons Laboratory on electronic computing machines are given for an ideal
gas propellant in a preburned propellant gun in s series of figures (Figure 20 and

Figure 21). The plots in Figure 20 present curves of ug/aO ve X for varying
values of G/M and a given D./D, and <y as shown in the following sketch.

1 G

I 3 M-
Do/Dy = 2.5 5

Yp Yy=1.4 1

N PPIG GUN

G

izb =po Al xp/’AAag L

The curve marked G/M = 18 the infinite chamber length case.

These curves are replotted in Figure 21 as up/a; vs DA, /Mag for varying values
of D/D, and a glven @/M and 7.

T G /M=5 go
=1.2 D./D
:i PPIG
o GUN

Xp = po Al Xp /Mgy ——

These plots in Figures 20 and 21 thus present the entire performance of a projectile
in an ideal gas preburned propellant gun with chambrage.

It is noted from the plots of Figure 21 that for finite values of G/M the
projectile velooity curves for evexy D /D become coincident at large values of
projectile trsvel

* As pointed out previously, G/M is a measure of the dimensionless chamber length, X, 88 seen
from the expression /N = yX A;/A = (YDA X /Nuo)(A /Ay,
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Thus, the projectile velocity at large travel is essentially a function of G/M alone,
and not the chamber geometry.

(In Appendix F the Pidduck-Kent Special Solution to the PP Gun problem is discussed,
This solution has long been thought to approach the accurate solution to the PP Gun
performance in the limit of large travel. This seems to be true, as seen from a
comparison of the Special Solution to the results computed by the electronic computing

-machine in Figure 21. It is noted that the value of velocity for a given projectile
travel, as ohtained from the Special Solution, oscillates about the value computed by
the electronic computing machine and approaches the computed value at large values of
projectile travel. The Special Solution yields an amazingly good approximation to the
performance of a PPIG gun.)

x

VARIOUS D,/|D1

x SPECIAL SOLUTION
~- COMPUTED RESULTS

=1.1 » —>
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PART VI. THE INFLUENCE OF GAS IN THE BARREL
IN FRONT OF THE PROJECTILE

Section 29
The Compression Phenomenon and the Applicable Equations

If there is gas in the barrel in front of the projectile, the forward motion of the
projectile will be resisted by this gas. The one-dimensional gas dynamic equations
may be used to determine the retarding effect of this gas in front.

Because the projectile compresses the gas in front of it as 1t moves, compression
impulses are sent forward from the projectile front end, each compression traveling
faster than the one preceding it*. Hence, the compressions converge and & shock forms
at some point S ahead of the piston; this shock inoreases in strength as the projectile
velocity increases.

v + a LINES
T _—-)|S'

T

X shock

]

The coordinates at which the shockwaves begin relative to the projectile initial
position may be obtailned analytically hy the method described in Reference 15 or 18
(also see Reference 58) as

tanook = 28,/((7; + 1)(du/dt)in) (28-1)

Xshock * 8i%shook (29-2)

where the subscript *“1" refers to the initial state of the gas in front of the
projectile and (dup/dt)in is the initial projectile acceleration. In practice for
high-speed guns, Xghook 81 tapoey 8T caloulated to be relatively very small. The
shock forms almost immediately in front of the projectile, An x-t diagram is shown
in the sketch on the following page.

* This is true because, as the projectile inoreases its velooity, 1t pushes the gas ahead of 1t
at an increasing velocity, and at the same time it heats it more., As & result both the local
gas veloolty u and the looal sound speed a are inoreased, causing the velooity at which
the compressions are sent forward from the projectile front ead, u + a , to increase,

L




P =p]
v=0 M D
Q-J- I a=da) //

Path of
ront of
Projectile

\

Projectile
\:% N = "
In the sketch the line A-B-C-D represents the projectile path, The line A-§

represents the first compression disturbance (which moves with velocity 8,). The
shock path is indicated by the line S8-T-M .

To determine the projectile behavior requires the use of

1. the unsteady one-dimensional characteristics equations applied to the propellant
gas in the region in back of the projectile,

2, the unsteady one-dimensional characteristics equations applied to the gas in
front in the region A-D-M-A in front of the projectile,’

3. the shock equations applied across the shock,

4. Newton’s equation applied to the projectile,

P¢

!

T

Pp

dup .
M 5 A(Dp ~Pp) (29-3)

»
Thus, a calculation involves continuous iteration and is much better suited to an
+ electronic computer than a human powered computer, (Some details of the procedure for
this caloculetion may be obtained from Reference 5.)
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Until the projectile experiences a disturbance coming from the shock (at B in
the sketch) the pressure in front of the projectile is related to the projectile
velocity annlytically, Thus, the region A-3-B is a simple wave region* for which

u-o = -0, . (29-4)

If the gas in front is considered an ideal gas then Equation (29.4) may be
transformed to an expression for the pressure in front of the projectile up to point B.

pe = b1+ (y, - Duy/ea )1/ (29-5)

After point B , the pressure must be obtained by the iterative procedure referred to
above.

Section 30

An Approximation for the Pressure of the Gas in
Front of the Projectile

The projertile acceleration in guns very quickly approaches low values; therefore,
the disturbances traveling back and forth between the projectile and shock substantially
equalize the conditions in the gas so that approximately the pressure and velooity
behind the shock at g directly behind the shock are equal to those at f directly
in front of the projectile.

g \Shock

The shock equations yield the followiné relation for the pressure and velocity
behind the shock:

2 yiy+1 1\? 2
pp. = 1+ [(LENYOED S, (XYM (30-1)
¢ ai) -4 8, 4 8,

* A simple wave region, as mentioned previously, cccurs next to a ragion of constant state
(l.e., oonstant velocity, pressure, etc.,), In this instance the gas in the region R-A-8 1is
in a constant state at its original undisturbed rest condition. The irseversible shock
8-T-M , however, makes it impossible to employ the characteristic eqrations across the shock;
the vegion B-S-M-D-B is thus not a simple wave region.
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(Appendix G summerizes the amatinne Par s shosk moving ints & gas ab sesi.) Since,
as mentioned,

Py P‘

(20-2)
Uy

2

Ug

Equation {30-1) becomes

2 2 2
p u +1) u +1 u
Prooog oy B\ 1 ED Yl [y (2 2p (30-3)
P, 8, 4 a, 4 a,
where u_ 1s the projectile velocity; this equation approximates the pressure in

front of the projectile during the latter part of its motion in the barrel. For large
values of “p/“x Equation (30-3) becomes

. 2 2
P +Zﬂél_+i)<ia> EM(_EP) . (30-4)
a
1

v, 2 8,

In practice, for high speed guns Xahook and Sghnex 8T calculated to be
relatively extremely small; the shock forms almost immediately in front of the
projectile at the start of motion. The process of equalizing the pressure and velocity
between the shock and the projectile occurs rapidly; thus, Equation (30-3) is a good
approximation for use to obtain the pressure in front of the projectile., With this
approximation Newton’s equation becomes

du
W = Alp, = pg(up)] . (30-5)

The pressure behind the projectile Pp . B8 discussed in previous sections, depends
on the geometry of the chember. For an x,=w, D,/D, =1, PPIG

(y-1)u 2y/(y-1)
b, = Py |1 - ——n=P (30-6)
p 0 [ %, ]

and Newton's equation may then be integrated numerically to yield the projectile
velooity-travel history. For an x,=oc, DD/D1 > 1, gun Equation (24-2) may be

used. Without too much error the sonic approximation in the barrel entrance (Equation
(24-8)) could be applied, i.e.,

) .27

A -1 -1
Py _ s /2_1 ol S Ayl Dl (30-T)
o 2 A, 28, J

and again Equation (20-9) may be numerically integrited. Reference 17 has done this
integration for the case D/D, = @ .

~

In the case x, = , a step-by-step numerioal solution of the characteristic

equations is required to obtain P, 88 8 function of L
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Seciiun 5i

A Convenient Approximation to Obtain the Prejectile
Behavior With Pressure in Front of the Projectile

To avoid the tediousness of the numerical integration which is generally necessary,
a convenient approximation for the effect of the counterpressure in front of the
projectile has been developed by Seigel*®. It is hypothesized that the percentage
velocity reduction due to the counterpressure will have approximately the same
functional relationship without regard to the particular gun. To obtain this
functional relationship the most simply calculated gun system is chosen, a constant
base pressure gun in which the propelling pressure is maintained constant at a value
of p, . (See the following sketch.)

PS> <1,

The pressure in the front is approximated from Equation (30-4) as

vy ly + 1) fu N
Py = p1[1+_—-—‘ : <_J-’> . (31-1)
2 e,
Newton's law applied to the projectile becomes
M u du (v, +1) Z7u,\?
_P!’:po-p‘1+1‘_zi__..£ . (31-2)
A dxD 2 8,

This equation may be easilly integrated to give the velocity up, for the case of
counterpressure.

0n? - YY1+ 1)P1AXp
a _ ol 2
ugl = __1_(20__!)_&2 1-¢ “"; . (31-3)

7.7, F )b,

Dividing up, by the velooity of the projectile with no gas in front up, =0,

where
/2p Ax
l.lpl..o = ___O_;_D.
Mao
N -y -
Upy _ 1 —B_‘. 1-0 ~ 1-e (3104,
Up =g pO Yy Yy

(Y + D (Y IP A Xy

F]
Ma1

one obteins

where

(31-6)

i
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This equation then, derived for a constant driving pressure, by our hypothesis
should be true for any gun no matter tha variation nf the driwine srcssurs; it states

that the percentage change in projectile velocity due to & counterpressure is
essentially only a function of the parameter y .

This equation 18 plotted in Figure 22, It is applicable until the increasing
pressure in the front becomes equal to the decreasing pressure in the back (as will be

the case for large values of the abscissa y). At that time Pp = Py and the velocity
of the projectile denoted by U, no longer increases.

Po

Pf

UP._____.

-2
—
- ———

UL

(For an x, = o gun the velocity u, 1is seen to be the same as the contact surface
velocity in a shocktube having initially p, on one side of the diaphragm and p
on the other. The method of calculating u, for the x, =® is outlined in
Reference 18.) If u, turns out to be greater than the value of u_ , as obtained
from Figure 22, then Figure 22 may be used. If u, is less, up, 18 then taken to
be equal to u and the value of y at which the projectile attains the velocity
u, is obtained by superimposing a calculated plot of “L/“91 =0 on Figure 22 as

shown -in the following sketch. \
uL
T ]1 UP] =|o
\
upl =0 WHERE ™~
Pf=Pp\§ N\ y —b
0
n

The intercept then indicates the value of y where Py = D, and where the
projectile has achieved its constant, limiting velooity.

The effect of the gas pressure in front of the projectile, as obtained from
Figure 22, has been compared to the results of numerical integration for an x, = o,
DD/D1 = 1, gun by the author and has been found to agree very well. It is suspected
that the figure will apply to chambered guns of finite chamber lengths as well.
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PART VII. THE RELATION QOF A PRERIRNEN DDADE
TO A SHOCKTUBE

Section 32

The Equivalence of a PP Gun With Zero Mass
Projectile to a Shocktube

A preburned propellant gun in which the barrel initially contains a gas (such as
air) is very similar to a shocktube. As shown below, the gun hecomes identically the
shocktube in the limiting case when the projectile mass approaches zero.

During the course of teaching unsteady flow in the classroom, the author has
observed that the logical process of learning for the student involves a discussion
of first the gun and then the shocktube. After the student understands the gas
dynamiocs of the PP gun with gas initially in the barrel, the following sequence of
reasoning introduces him to the shocktube.

A PP gun with gas in front of the projectile is visuallized before the projectile
has moved, as in the following sketch.

Poy Y

a0 Plo Y10 N

As the projectile increases in velooity, the pressure of the propellant gas directly
behind it decreases and the pressure directly in front of the projectile increases.

Py

¥

L
P up —

The variation of these pressures with projectile velocity, for example, in the camse
ofa D/D, =1, x, =, PPIG/gun, is obtained from Equation (30-6) and
Equation (30-3).
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Foutv-n12/-1)
P, = P Ll - _ﬁ______J (32-1)
2a,
oy, +Hyu N2 u +1u ]?
pp & pd 1+ NN Tillp f  ZatDupT | (32-2)
4 B, & 4a1

In the case of longer and longer barrel lengths, the value of the pressure behind
the projectile approaches that of the pressure in front of the projectile, and the

projectile then reaches practically a constant velocity, designated as uL'.

Po U
t G Pp- Pu—
— = oy ———
p X,y = €O
P Pp = Pt
P |
p] Up -—

uL
For example, in the above example a Do/Dx =1, x,=o, gun this veloocity may be
calculated by equating Py to p, in the equations.

The rapidity with which the velooity u, is approached by the projectile is
evident from an examination of Newton's equation for the projectile.

dup/dt = Ay (pp - P/ . (32-3)

For a gun of given DO/D1 and x, =, both p, and p,, and henoe their
difference Ap , are essentially functions only of the projectile velocity®*.

T.

Bp

* This is true regardless of the length of 9 if the projectile mmss approaches zero, in

which case reflections do not reach the projectile until after the projectile is moving at
velocity u,
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Thus,

)

& © Aoy vl M = Adop/M (32-4)
From this equation it is sedn that at a given projectile velocity the projectile
acceleration is inversely prpportional to the projectile mass M . Thus, the smaller
the mass, the more quickly tﬁe projectile accelerates to the velocity u

L

time ———=p

Making M smaller may be seen in the following sketch to alter the characteristics
diagram by causing corresponding events tu happen more quiokly.

*
x

A !

~
=

v-a
p S characteristics

RN N

M Small

The characteristics diagram for small M appears like that for large M except that
time has been contracted (as if one views the large M diagram from far away).

The contraction causes the u-a ocharacteristios in the small M case to tend to come
from a single point.

Exanining Newton's equation again one concludes that at any finite Ap other than
zero the projectile acceleration is infinite in the limit of zero M.
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=0
1 ‘I’ f
p dvp
M>0 dt

l

t—s M —>

But Op remains greater than zero until the projectile velocity becomes equal to wu

po = P"-

Ap

Up.__..

05 >

Hence, the acoceleration of an M = 0 projectile is infinite for an instant.

?

to infinity

M=0
&
dt
—i}-— an instant
time —»

As a result, a massless projectile attains the velocity u, instantaneously. When
u; 1s attained, Ap becomes zero. There is then no further change in projectile
velooity,

The time that is required for a shock to form in front of a projectile is obtained
from Equations (28-1) and (29-2) as

_ 2 8,
tlhook -

(32-5)

Vil (dup/dE) gnygia)

il . o
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In this case of a massless projectile it has been demonstrated that the initial
‘acceleration is, for ‘one instant, infinite. Thus, by Equation (32-5) the shock forms
instantaneously immediately in front of the massless projectile; the strength of this
shock corresponds in strength to the projectile velocity (gus velocity) u . The
events which took place at different times t,, tg. and te in the x-t sketches
shown above take place instantaneously in the massless projectile case. 1In the x-t
plane the shock and projectile paths are thus straight lines emanating from the origin,
In this situation the gun is a shocktube, the projectile becomes a demarcation, known
as a “contact surface'' or “interface’” between the propellant gas and the gas initially
in the barrel (the driven gas). The propellant gas is known as the “driver gas'.

The u-a rarefactions all originate at the origin and are termed “centered
rarefactions",

A2
4 o
] x /‘\
PL
v constant
— e e u,a etfc
°\constanf PL ope
v,q,p, ete. |YL
vu-a
lines
i A,8B,C
consfan:/‘ ¢onditions ' :onstant Uind
\\ conditions
u=alines

Subsonic case . Supersonic case

As geen from the oaptions under the characteristics diagrams, the propellant
behavior in the shocktube may be desoribed as being “subsonic’’ or “supersonic”,
depending on the gas flow immediately behind the projectile, (The slope of a
‘“u-a" line 18 obviously negative for subsonic flow and is positive for supersonic
flow.) Whether the gun he chambered or not, in the limit of zero mass of projectile
the gun becomes a shocktube of the same geometry.

Section 33
The Performance of a Shocktube in the Strong Shock Case
To determine the performance of the shocktube one need only equate the pressure
behind the massleas projectile to the pressure in front and calculate u, . the

interface velocity.

If the driven gas is initially at a very low pressure, it will not offer too much
resistance to the massless projectile or interface. In that oase the interface would
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achieve o volocity g, Silghily less ihan the escape velocity Ugge Approximating

; the interface as Ugge + the pressure in front of the interface, which is that behind
. the shock, may be calculated from the shock Equation (32-2).

vy r——

Py . 71(71+_—1) Uego\’ (33-1)
P, 2 &,

From the shock relations it may be shown that (see Appendix G)

Py 7 +1
_— (33-2)
Py Y -1
y for strong shocks, and so
|
] ' p/Py . Ty 8; = 21V =1) fUggg : 5
- p,/p, T, a? 2 8, :
or .
82 = (v, -Dud. /2 (33-3) |
i
E or j
| " ; .
i 680 _ (33-4)
'i 52 71(71‘1) B

Mach number of gas in
front of contact surface.

Thus, the Mach number behind the shock for the strong shock, low b, s case 18 at
most v2/[y (v, - 1)].

Section 34
The Significant Difference Between a Gun and Shocktube

. Since the shocktube is a gun in the limit of projectile mass going to zero, the
qualitative conclusions reached as to performance of guns apply to shocktubes; the
' chambrage effects and real gas effects are the same, the criterisn for good performance
. are the same, However, there is a significant difference between the gun and
shocktube; namely, in the shooktube the equalization of the pressure between the
front and back of the interface occurs instantaneously, in the gun the equalization
_ of pressures between the front and back of the projectile requires an infinite time.
. This difference manifests itself as a difference in the pressure-velocity relation
for the expanding gas when chambrage exists.

In an X, =, PP Gun with no chambrage the pressure-velocity relationship behind
the projectile is governed by the condition that all disturbances reaching the
projectile originete from the propellant gas at its initial rest state. Thus,
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u+t+o = o (34-1)

0

or du + dp/ap = 0 (34-2)

applies to the gas behind the projectile regardless of the fact that the projectile
is or is not accelerating. The same equation applies to the gas behind the interface
of a shocktube, and hence the shocktube gas would be described by the same p-u
relation as for the propellant gas in the DO/D1 =1 gun. »

. _'3 tShock
op 1

L1 mp

Yp |Pp

Dy/D1=1 gun
and shocktube

Pp

Up—’

For the chambered gun, disturbances reaching the gas behind the projeotile come
from the exit of the transition section. At this point conditions are continuously
changing with time because the projectile continuously acoelerates and continuously
sends back disturbances to the transition section, which is thus alwaya lagging behind
in its adjustment to the accelerating projectile.

Projectile Path

Disturbance Disturbance
from from
Projectile Transition Section

To Projectile

/
«— & 3

Transition Section

Conditions behind the projectile in the gun are thus determined by the two characteri-
stios equations* applied in the barrel.

* It 1s to be noted that, in both the gun and shooktube cases, the quasi-steady equation
udu + dp/ap » O applies. However, for the shocktube, conditions within the transition
section are actually steady; for the gun the equation iw an sapproximation for the actual
unsteady flow.
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du i dpfas = 0 {34-3)
du - dp/ap = 0 . (34-4)

In the chambered shocktube, the gas at the exit of the transition section is at a
constant state. Only the disturbance coming from the transition section exit to the
projectile is required to determine the p-u of the gas behind the interface; only
the one differential equation for the downstream disturbance

du + dp/ap = 0 (34-5)
is required.

This difference between gun and shocktube may be seen by applying these equations
to the situation in the following sketch.

Projectile

Path A

The following equations apply:
Uy =0, = U ~0y (34-8)
g, + g = up + og (34-7)
ft is meen .that the conditions at B whioh determine those at the projectile ¢
depend on those at the projectile at some previous time A . In the case of the
shocktube, conditions at A and C are identical.
Thus the u + o at the projectile in a chambered gun lags thé.t at the interface

of & shoocktube; this situation results in the p-u ourve of the shocktube as being
above that of the gun as shown in the following sketches.

Contact Surface

Ty T 1

! Projectile oo

Shock Tube
Contact Surface

Gun

Projectile

Do/D1> 1 DDy > 1 X

u—> u—b
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The significant Dasamelor which guverns now quickly the conditions in the gun

become almost constant is the dimensionless ratio plag,/poaf ; this conclusion is
obtained from the expression for dimensionless projectile acceleration:

M(du/dt) = (py - DA,

or _
U= uﬁro
with _
T = pyAt/Mo,
da 24
p =31 p ’y(‘)’ +1) /s
-—-:\'_{1+e—ﬁ}"“-—l e LA Tk gy e X 34-8
dt P -1)2 (34-8)

The larger the ratio p "o /D a.1 , the more quickly conditions in the gun become
constant and the more alike will be the p-u ourves of gun mnd shocktube. (Of course,

the difference between the shocktube and gun p-v curves also disappears as the
chambrage becones less.)

Chambered Shocktube

P1 a%/ Po 021 = large
Dg/Dy >1
b1 a2/ pg af = Small ‘

- U8 —»

The maximum difference between chambered shocktube and gun ocours when the pressure
in front of the diaphragm is zero. Pressure-velocity curves for this case are shown

in Pigures 42 (for an ideal gas) and 43 (for an Abel gas with b/(vo-b) equal to 8.098).

It 18 to be noted that at large u, (when conditions become constant in the gun) the
gun curve approaches that of the sgooktube.

e ———————
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PART VIII. THE APPLICARYTLYTY AR THE TSEMNTROnDTN muosos 70 GUNS

Section 35
Is the Gun Process Isentropic?

An isentroplc process (i.e., a reversible adiabatic process) is one in which the
effects of friction and heat transfer are absent. Isentropicity requires that the
process be infinitesimally slow, that the gradients be infinitesimally small. Since
the expansion process in a gun is a rapid one (of s few milliseconds duration) one
could well question the assumption that in a gun the expansion is isentropic. There
definitely exist gradients of temperature, velocity, and pressure throughout the
quickly expanding propellant gas.

Every real process, of course, i1s irreversible, for the occurrence of a finite
process is the consequence of the existence of finite gradients. However, it is
realized that the irreversibilities associated with the process of rapid expansion
are inherently smaller than those associated with the process of rapld ocompression
or of retardation of expansion. This is true because in an expansion process the
gradients within the gas tend to decrease, whereas in the compression process they
increass, resulting in turbulence and shock. Thus, in the case of a gas which is
allowed to expand rapidly from one equilibrium state to another, although the entire
process 1s foredoomed to be irreversible, most of the irreversibility occurs during
the slowing down part of the process.

Thus, the question is not if the expension process in a gun ig isentropic, but to
what extent is it non-isentropic? This quéry to the present has not been completely
answered; the answer requires both analytical and experimental considerations,

Section 36
Experimental Results for Guns with Heated Propellants

A multitude of date has been ohtained in the laboratory and in the field on the
performance of guns using heated propellants. Almost every laboratory has success-
fully and in its own individual manner fitted its own experimental results to its own
theory. Thus, for example, good agreement between theory and experiment has been
reported by AEDC®!' %2, General Motors®®, Ames Research Center?’:®*, carde®’, BRL®?,
NRLY%% NOL'Y, and so on (see, for example, Figure 28). However, in almost all cases
comparisons between these gun experiments and theory lack the desired accuracy to
assess the validity of the assumption of isentropicity. The reasons for this lack
are the following:

(a) The 1nitia1 conditions are usually not those of a preburned prepellant gun
and sometimes are very poorly known.

(b) The amount of data obtained during & firing is inadequate; in most cases only
projectile velocity and chamber pressure are measured.
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(c) Usually the data measured lack accuracy.

(d) Usually the propellant gas thermodynamic data are not accurately known.

(e) In the case of two-stage guns the complexity relative Lo u single-stage gun
makes the above deficlencies even more serious.

In sum total, these data indicate that the isentropic theory gives good agreement
with the experimental results at lower velocities; at the higher velocities (12,000

ft/sec to 36,000 ft/sec) the theory yields velocities which seem to be significaqtly
higher than the experimental velpcities.

Section 37

Experiments with a Compressed Gas Laboratory Gun -
Description of the ERMA

It has only been relatively recently that precise experiments have been performed
with guns in the laboratory. This has been accomplished by using & compressed room
temperature gas as a propellant in a carefully controlled manner. An experimental
PP Gun for basic research (designated ERMA for the initiml letters of the descriptive
title “expansion rate measuring apparatus'’) was conceived and used first at the van der
Waals Laboratory in Amsterdam'“ % 1% 20 & sopy of this instrument was later installed
at the Institute of Moleoular Physics at the University of Maryland?! 2%

ERMA i8 a constant diameter steel gun of 12,00 1 0.001 mm diameter. The assembled
ERMA i8 shown in the following sketch; the projectile holder is shown in Figure 23.

oil for holder

Chamber l ‘/Ele\ﬂirlcal Contacts
Polysryrene
Z
¢ Microwave
Projectile Holder Wave Guide

Barrel
Nitrogen

The propellant gas (usually nitrogen) is slowly bled into the chamber from a reservoir
by a control valve A ., The projectile holder, by means of externally applied oil
pressure, restrains the projectile from movement until the pressure is at the desired




71

level in the chamber. The barrel is approximately 50 cm long. In the barrel are

ten small electrical contacts spaced at progressively greater intervals from the
initial projectile position. Each contact serves to measure projectile displacement-
time by completing an electrical eirenit. whan the projactile passes the contact. 1In
front of the muzzle is a replaceable polystyrene extension of a wave guide which
transmits the signal for a microwave interferometer system to and from the projectile
as it moves; the microwave signal thus also provides the displacement-time history of
the projectile as it moves in the barrel.

To initiate the movement of the projectile the oil pressure to the projectile
holder is lowered, releasing the projectile. The data measured during the movement
of the projectile along the barrel is thus a series of travel-time (x-t) points.
There are ten points obtained from the electrical contacts and 150 x-t points
obtained from the microwave interferometer. (The two methods of measurement are in
excellent agreement®!.) As the projectile leaves the barrel, 1t shatters the polystyrene
wave guide extension which may be eplaced for the next firing. The projectile itself
is caught undamaged in a column of cotton waste and re-used. Projectile muzzle
velocities varied from 250 to 350 metres per second.

The propellant used in ERMA was compressed gas (usually nitrogen) up to pressures
of 3,000 atmospheres at room temperature. The pressure and temperature of the compressed
gas in the chamber were precisely known (t 1 atm and % 0.03°C, respectively) when the
projectile was released. The projectile mass and diameter are also accurately measured.
The position of the projoctile, as measured from the 150 microwave data points, is
accurate to + 0.001 cm for a given time. An accurate knowledge of the isentropic data
for the propellant gas was obtained from mctual p-v-t measurements: these data
permitted a calculation of the projectile behavior which could be compared to the
experimentally measured x-t points. Although most of the experiments were performed
using a chamber of effectively infinite length, some experiments were done with a
short length chamber.

Section 38
The ERMA Experimental Results

A typiocal result from one of the ERMA experiments appeared as in the sketoch on the
following page.

More than 200 experiments were performed, and the experimentally obtained projectile
travel was compared to the travel as predicted from the insentropic theory.

The important result obtained from these experiments for projectile velooities of
the order of the initial sound speeds was the following: The experimental projectile
behavior was close to that predicted by the isentropio theory; specifically, the
projectile velooity was from the travel-time measurements determined to he about two
percent lower then isentropic theory would predict.

Thus, for the first time a quantitative determination of the discrepancy between
the isentropic theory and experimental gun performance was made. (After correcoting
for the two peroent velocity disorepancy by use of a four percent opposing pressure

, ,
1
o
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the predicted behavior for a firing with a short chamber in which raeflantinns
occurred was in excellent agreement with experiment (see Fig.24 and Ref.28).
Moreover, the travel-time data obtained from the ERMA experiment with argon as a
propellant has been used in an inverse manner to calculsate previcusly unknown
isentropic gas data??

1.0
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The discrepancy of two percent in velooity, it must be emphasized, oocurred for
the case where the projectile speed was of the order of the initial gas mound speed.
(As indicated below, it is believed that the discrepancy would increase with
inoreasing projectile speed.) Moreover, in the ERMA case, heat transfer ocours
from the barrel walls to the gas, rather than in the opposite direction as it doea

for the usual heated propellant gun, Thus, heat transfer in ERMA tends to inorease
the projectile velocity.

The causes of the discrepancy between isentropic theory and experiment have as yet
huoon completely resolved. The analysis of the ERMA experiment indicated that the
cepancy was & result of the gas-wall boundary-layer friction and heat transfer

wi projectile-barrel friction. For the ERMA experiments the discrepancy could be
upproximately accounted for by assuming counterpressure to be acting on the projectile
equal to four percent of the propelling pressure.

Section 39
Analytical Considerations of the Effects of Non-isentropicity

It i8 not necessary to examine the small gas layers mioroscopically to determine
whether they mey be considered as isentropically changing their state or not. It is
only necessary to examine mioroscopically the gradients existing within the gas,
From the phenomenological laws governing the irreversible phenomena caused by such
gradients, it is possible to caloulate the effects of the irreversibilities; the
significance of these irreversible effects may be assessed by comparing them to the
other changes ocourring during the process,
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(8) The temperature gradients betuween energy modes

The poraibility exists that during the expansion of a propellant gas the energy
modes are not in equilibrium. However, calculation indicates that for the types of
gas propellants and for the densities and for the expansion times involved in guns,
the various energy modes (vibrational electronic, rotational, dissociation, etc.)
remain substantially in equilibrium with the translational mode. There are thus no
significant time lag effecta®,

(b) The viscous effect between gas layers

The torce equation applied to a layer of gas with the viscous friction term
included is

3u+u3u 10 143"&1 (39-1)
%t o P = £33 n/

For the preburned propellant gun the magnitude of each of the various terms of
Equation (36-1) may be oaloculated (with the assumption of an isentropic process).

It is found from computation that-the viscous gradient term is negligible relative

to the other terms in the equations. For an actual experimental gun (the ERMA gun
referred to in Section 37) the following values were caloulated:

2

4 9%
- — =, "¢ kg/om®
L M5 T 00k g
E?- = 10 kg/on® .
o

Thus, it is seen thut the effeot of the gas viscosity within the gas is not important.
(This is true even i1f turbulence existed within the gas.)

(0) The heat-transfer effect between gas layers

The effect of heat transferred from one part of the gas to another by conduction
can be oalculated, The temperature change per unit time at a point within the gas
by conduction is

T k 9
EX Y (39-2)
v

t
where the conductivity k is assumed constant, and o is employed rather than c¢_ ,
since the isentropic process is more neerly one of constant volume. This temperature
change due to conduction has been calculated for guns and has been found to be
negligible. Por example, in the case of an actual experimental gun (the ERMA gun
referred to in Seotion 37)

¢ There are some exceptions, such as the sxpansion of room temperature carbon dioxide behind
a light projeotile,
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k9%
pe, x?

For the 8§ x 10”7 seconds of the expansion the Lempersture change was 6 x 10~° °C ,
s negligible amount. (This conclusion would remain true even if turbulence existed.)

(d) The effect of friction and convective heat transfer between the walls and the gas

Because the propellant gas is in motion relative to the walls of the barrel and
chamber, a boundary layer is formed; this boundary layer is a manifestation of the
friction existing between the moving gas and stationary walls; similarly, because of

the temperature difference between the walls and gas, a thermal boundary layer is
present (se¢e following sketch).

Although the boundary layer bshavior in shocktubes has been analyzed rather
succesafully for the gas behind the shock, this is not the case for the driver gas
region in the shoocktube. Both for the shooktube and the gun, the driver gas boundary
layer is coupletely unsteady; analysis has therefore not been sucoessful. The
transition Reynolds numbers defined by local flow properties and the time a particle
hus been in motion appears to be in the region of a million. A review of the
boundary layer work done in shocktubss is given by Glasa®".

Williams®® analysed the driver gas region of a shooktube on the basis of an
“gquivalent steady pipe flow”. He assumed the flow to be fully developed turbulent
flow immediately because of the large Reynolds numbers attained by the driver gas
alwost immediately, A similar analysis has been applied to the propellant gas of
a gun®®  with the sssumption of a fully developed turbulent flow the effects of the

boundary layer are obtained in s one-dimensional analysis by assuming the friction
force to be aoting at the wall.

Friction

~ FPAdx ™  Force
/

7
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The steady flow turbulent skin friction coefficient is used; thus, the friction
force per unit mass 1s

4 1 2
F = ——¢ (39-3)
pD, 2

where the skin friction coefficient c, is taken as for turbulent steady flow

cg = 0.049(Re; )

o

To obtain the heat loss from the gas, Reynolds analogy is assumed to hold. ‘Thus

1 Iy -2
S° * —.:m- (Pr) (39-4)

where § 1is the hest-transfer coefficlent, Pr is the Prandtl number and op is the
specific heat; the rate of heat transfer per unit mass is

. 4
- = — R(T

oD, recov ~ Twall (39-5)

GAS LAYER dx

-ép Adyx ‘
The entropy change due to the friotion and heat transfer is, by Equation (H-9)
of Appendix H,

'rd'-l"u+‘ (39-8)
dt ¢

The entropy change equation may be used with the characteristics equations of
Appendix H to obtaln the behavior of the gus and projectile. In Refersnce 26,
however, the entropy change was used to oaloulate the behavior hy use of the von
Neumann-Richtmyer method on an electronic computing machine,

The results of this analysis yield caloulated projectile velooities that are below
those obtained for the friotionless, isenivopic case, Figure 25, taken from
Reference 26, glves some comparative resulis. It is thought that this analyais
approximates the effects of heat trans{er and friction in guns; it is hoped that
future analyses will improve the appruximations, As indicated anbove, gun experimental
results have not separated the effects of boundary layer induced heat transfer and
friotion from that of barrel erosion snd projectile friotion., Bwift®" reports mome
experimentsl and analytical results on convective heat losses in guns.

As indiocated above, boundary layer losses inoreade with inoreasing veloclty (see
Equation (39-3)); these losses reduce the propelling pressure behind the projectile,
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When the propelling force drops to a value equal to the bore friction, no further
acceleration will occur. Experience with existing light gas guns indicates that this
point occurs probably between 200 and 400 calihers. However, by effecting a constant
base pressure, as discussed in Part X, the numbher of calibers would be increased.

(e) Heat loss by Radiation

The heat loss by radiation from the propellant gas in guns is generally negligible.
Thia conclusion may be reached by calculating the radiation heat loss with the
assumption that the gas radiates like a black body. BSuch an assumption will yield the
maximum radiative heat loss®,

With the assumption of a black body, the radiated energy Q becomes
Q = KT*(At)A, (39-7)

where K 1i& the Stefan-Boltzmann constant, At 1is the time interval during which
radiation ocours, and A, 1s the surface ares of the radiating gas; the temperature
of the wall has been assumed negligible in this expression, The radiated energy

transferred from the propellant gas may be set equal to the energy change of the gas.
Thus,

Q = novAT (39-8)

where n is the number of moles, o, the average speoific heat, and AT is the
average temperature drop of the propellant gas. From Equations (36-7) and (36-8)
the temperature change of the propellant gas becomes

YAt
AT = KT (Ot)A, . (39-9)
nov

Inserting numerical values appropriate to high-speed guns into Equation (38-9)
results in a oaloulated temperature drop AT which is negligible. For example, let
us consider the case of & two-stage gun when the pump tube piston has compressed the
hydrogen propellant to the peak values of temperature and pressure indicated below:

p = 300,000 1b/in?
T = 8000%
v = 5500 om?

7
/ % —\

/ psi

* An exaot caloulation is mlmost impossible to make because, in general, the valuez of
eminsivity for propellant gases are unknown,
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A, = 1500 cm®
n = 250 moles
¢, = B cal/mole®k

With K equal to 1,36 x 1072 cal/cm? sec(%K)" the temperature drop for a period of
two milliseconds (At) is

AT ~ 3%
This 1s a negligible drop in propellant gas temperature.

Experimental and theoretical results obtained for the reservoirs of liot shot wind
tunnels at AEDC®® confirm the above conclusions; the radiative heat losses are
negligible during the t.ime of interest for the conditions of temperature and density
existing in a PP gun or in a: two-stuge gun.

(£) Projectile-barrel friction

The discussion will be restricted to smoothbore guns. The effect of projectile- !
barrel frioction is evident from experience with light gas guns. This experience
indicates that when the barrel is greater than 200 to 400 calibers in length, the
projectile may actually decrease in velocity. There is hardly any experimental data
on the magnitude of the bore friction itself.

Some information may be obtained from the results of the ERMA experiments. These

experiments were in general, done with well-machined cylindrical projectiles '
(12.148 £ 0.00083 mn) in a well-machined barrel (12,1668 * 0.001 mm), The experiments : !
indicate that, by changing projectile materials and projectile lubrioants, the ) j
discrepancy between isentropic theory and experiment may be somewhat changed, Definite ' ’
evidence of projnctile friotion was noted either by loss of weight of bronze projectiles . i
or by gradual increase of barrel diameter with hardened steel projectilass, 'The i
acouracy with whinh steel projectile diameters were made seemed to have no effect on ‘
the discrepancy. (One group of projeotile dlametovrs was machined to & 0.0002 wum;

the other, to £ 0.0015 mm,)

The closeness of fit between projectile and barrel made no difference in the
discrepancy. (Projectile diameters varied buetwoen 12,146 and 12.155 mm in a barrel
of diameter 12,166 mm)

It was, however, found that the discrepuncy bvetween isentroplc theory and
experiment could be significantly reduced by decreusing the rubbing area of the
projectile., This was done by machining a projectile of unifoiw diameter to form a
projectile with a waist in the center and two rings of contact. This decrease in
rubbing area of about 50 porcent resulted in u decrease in velooity disorepancy from
2.4% to 1.6% (Bee sketch on the following page). One could extrapolate this
result to zero rubbing area and conclude that with projectile friction absent the
velooity loss would be 0.8% or about 1% One ocould thus ascribe half of the 2%
velooity discrepancy in the ERMA case to projectile-barrel friction, the other half
to boundary layer. At the present state of ignorance on the role of bore friction,
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it is probably as good w8 any method of acocounting for it by assuming a counter
frictional pressure proportional to the propelling pressure,

Tep ,
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constant
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Bore Friction

For very smooth bores a value of 2% (which results in a 1% veloeity deorement) is
recommended for this percentuge. One certainly is left with an unsatisfactory feeling
about the ability to caloulate projeotile frioction for a given gun, What is required
are tore ERMA-type experiments combined with more sophisticated boundary layer
analysges,

Section 40

Conclusions as to Methods of Accounting for
Boundary Layer and Projectile Fr{ctlon

The relatively careful study done in the ERMA experiments indicutes that the
isentropic theory prediots a projectile velocity which is about 2% higher than
achieved experimentally. In this study the propellant was initially st room
temperature; the steel yrojeotile was carefully machined; the projectile velocity
was of the order of -he gas Initial sound speed.

1
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However, as described above, experimental results for guns using high temperature
'lehf ZARAR f’i'rina nrninr-fi'lnc hatwaan 12 00N £t Joan and a0, 000 £+ Joos indisgte o

NuLveve W

larger discrepancy between the experimental results and the isentropic theory. This
discrepancy seems tc increase with increasing projectile velocity. One universal
difficulty in calcuilation is that the wnitial conditions for the experiment are not
well known; in most cases the isentropic equation for the expanding propellant gas is
also not well knoun.

Experimental and theoretical results indicate that the discrepancy is a result of
boundary layer effects and projectile friction. However, at the present time, the
validity of the methods being employed to account for these effects has not been
satisfactorily demonstrated. , It is for this reason that an approach based on dimension-
less analyses is suggested ir Reference 18. If one analyzes the effects of the
irreversibilities on projectile velocity, it is concluded that the ratio of projectile
velocity with frictional effects (boundary layer and projectile friction) up, to that
without frictional effects pgay i1s mainly a function of

i S i
Upges 8, D

with other dimensionless parameters such as Reynolds number, etc., being considered
nov essentidlly important, (The efrect of v , it is noted, is accounted for by
inoorporating it into the quantity u _/a, , the parameter tound to be significant in
Seotion 12 for determining theoraticnf PP Gun velooities.)

Based on the experimental results with high veloocity guns at the US Naval Ordnance
Laboratory, a ocurve of up,/up,, hes been plotted versus yu,/a, and is shown in
Figure 268 and in the following s etch
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These experimental results were obtained from single stage H,-0,-He propellant guns
and two-stage hydrngen guns; sizes of these guns varied from 0,22 in bore diameter to

4 in hore diameter; mctual velocities, from 10,000 to 23,000 ft/sec. Tentatively, it is
proposed that this plot be employed to take account of the frictional and heat-
transfer effects until more careful theoretical-experimental studies better define
these effects, It is to be noted in Figure 28 that below 7u7/ao of 1% the friction
effeots appear to be not important. Above this value of yu these effects

become more and more significant. The plot of Figure 26 demonstrates agein the desira-
bility of a high sound speed which is seen to cause the frictional effects to be asmall
relative to the inertia effects in a high-speed gun.

— R ——

e
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’X. METHODS OF HEATING THE PROPELLANT
Section 41
Use of the Heat of a Chemical Reaction

It has been previously demonstrated that thz basic property of a propellant required
for high projectile velocity is a low acoustic inertias; in the case of an ideal gas
(a reasonable approximation in most cases) this is equivalent to a high initial tem-
perature and low molecular weight (or a high initial sound speed). 1In practice, the
need for a low molecular weight propellant is satisfied by using helium or hydrogen.
There are a number of ways to increase the propellant gas temperature, One method of
heating the propellant gas is to use the heat produced by a chemical reaction. Often
used is the reaction of hydrogen and oxygen. Thus, the propellant becomes a steam-
heated hydrogen or helium propellant.

The conditions after heat addition of the steam-heated hydrogen or helium propellant
may be calculated as accurately as desired. (Such calculations have been done by
Benoit®’.) A commonly used reaction is the following:

8He +3H, +0,~8He+H, +2H,0 + heat

The resultant propellant mixture has a nolecular weight of 8.5, a temperature around
2700°K and a sound speed of 7000 ft/sec. The resultant pressure is about seven times
the initial loading pressure. The average value of <y to be used during expansion

is about 1,45. As seen from these values, the sound speed is low relative to the value
for a pure hydrogen or helium propellant at a temperature of 2700°K.

Moreover, the possibility of detonation oocecurring is present when using H, and
0, to heat the hydrogen or helium propellant. Experience at the US Naval Ordnance
Laboratory indicates that detonation may be prevented in chambers of diameter less than
about 4 in if the gases are well mixed, the ignition is accomplished simultaneously at
many points, and the reaction is allowed to go to completion before the diaphragm is
ruptured, However, for chambers above 68 in in diameter at initial pressures of the room
temperature mixture above 6000 1b/in? detonations will ‘aimost always ocour.

Because of the possibility of detonaticn and the relatively low sound speed attained,
hydrogen-oxygen to heat chemically the propellant is not widely used. Other disadvan-
tages are the amount and pressure capability of the gas handling equipment required
and the necessity to provide ignition. One advantage is that the chamber to be used
may he relatively small, The use of other chemicals (e.g., compounds of aluminium and
oxygen) to heat has not been very successful. The maximum velooities attained in
H, , 0, , He guns are around 13, 00G ft/sec. Reference 61 describes the performance
of such a gun, See also References 87 and 90.

Section 42

Use of Electrical Arc Heating

Heating hydrogen by means of an arc discharge has been done in & number of
laboratories, For example, see Reference 62. At high imputs of electrical energy,
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the experimental projectile velocities are less than theoretically nradicted T+ ia
speculated that the hydrogen gas propellant is contaminated by metallic electrode
particles, thus increasing the moleculer weight of the hydrogen propellant (see
Reference 79). The maximum velocities sttained in arc heated guns are around 18,000
ft/sec. At the present time such guns sre not attractive for producing high velocity.

Section 43
Shock Heating
Heating hydrogen, helium, or steam-heated helium by means of a shockwave has been
attempted (see for example, References 27, 28, and 117 for experimental and analytical

results). The shockwave is generated by a propellant in s chamber attached to the
back of the gun (see following sketch).

1 SHOCK
8H

o > —
+Hy0 at Hy at low pressure % —\
High pressure E‘

. Reflected
Shock
-
= Sheck (L
Heated H, f—-—% S

T

Results at the US Navel Ordnance Laboratory with such a gun indicated that the
projactile velocities were 25 to 35% below thuse theoratically predicted. It was
concluded that the shook was not well formed, and that a light piston soparating
the H, from the H,0 and He would be desirable,

Such & gun using a light piston to separate a driver from the shock-heated helium
was used®® at Ames Research Center, NASA. This gun is shown in the following sketoh.

8 e e — e -

%00 gram 127 Projectile
gram
powder charge piston 2,25" 2.5 grams 0.788"
HELIUM T -L
40 Helium 250 psi
300 Psi r
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Tue wuzele veluciiy vbtained by the Z.b gram projectile with the initial
conditions illustrated above was 22,670 ft/sec, This type of gun is relatively
simple to operate and need not be expensive,

Since the propellant gas 18 shock-heated, a smaller compression ratio is required
by the shock-heated gun than by a gun using 8 heavy piston to isentropically compress
the propellant gas. Consequently, the shock-heated propellant gun may be smaller
in length than a gun using isentropic compression, However, the shock-heated gun
will, because of the low inertin of the light piston, not maintain the propellant gas
pressure for as long a time as for the heavy piston isentropic compression gun,
Morsover, the light piston is not an efficient heater of the propellant gas, as
pointed out by Lemke’® and Baker!!5 increasing the piston velocity does not produce
a Bignificantly higher peak temperature, because the higher piston velocity requires
a higher initial pressure to limit the peak pressure. Experimental results confirm
the fact that the light pifton shock-heated gun produces lower projectile velocities
than the heavy piston isentropic compression gun., The two stage piston gun is
discussed below.

Section 44
‘The Two-Stage Gun -~ General Description

The first successful light gas gun was developed by the New Mexico School of Mines
around 1942 (see References 28, 88, and 89). Hydrogen was used to propel light
spheres at velocities up to 14,000 ft/sec. The hydrogen was compressed and heated
by a single stroke piston driven by a gunpowder propellant. The barrels used were
0.25 in and 0,38 in diameter,

Piston

U
Gunpowder Lf
Propel lant

gases F

PUMP TUBE

It was thought that the compression ratio required by such a piston ecovprsdsed
hydrogen gun would make the chamber impraotically large for guns with iwivi~'s ahove
the 20 mm size. Thus, for a number of years guns using other mefbuis . ¢ hnling the
propellant were used,

Experience through the years, however has demonstrated that to ¢=t+s tiw only
successful method of attaining projectile velooities above 20,000 f:‘«rc is to use
the original concept of the Mew Mexico School of Mines gun, the concapi of heating a
l1ight gas by means of piston compression. Today's so-called ‘‘two-stage’ guns use
this oonocept.
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The seanence of avents nernrring in a two.atage gun de i1lnct sen a7
Initially, the pressure p, of the back chamber gas is Ligh relati: Cin pressure
p, of the pump tube (front chamber) gas (hydrogen or helium). In upurution the high
pressure gas in the chamber ruptures the diaphragm “A’* and then pushes the piston of
mass M 1into the gas in the pump tube, heating it and compressing it; this heating
and compression is effected, generally, by shockwaves* which travel back and forth in
the hydrogen (or helium) between the piston and projectile. When the pressure in the
pump tube reaches a sufficiently high value, the diaphragm “B'" separating the pump
tube from the barrel ruptures, and the projectile is propelled along the barrel by the
gas in the pump tube. The shocks which exist in the hydrogen (or helium) may travel to
and be reflected from the projectils.

It is possible by this method to obtain much higher sound speeds in the compressed
gas in the pump tube than could be achieved in the propellant gas in a single chamber
by heating it chemically or electrically. Thus, the gas in the pump tube reaches a
higher value o7 sound speed than the value of sound speed 8, in the chamber. Of
course, all the energy imparted to the gas in the pump tube comes from the gas in the
back chamber; the piston provides an efficient means to transfer this energy; its
inertia makes it possible to compress the gas in front to very high internal energies
at the expense of the internal energy of the gas in the back of the piston.

The two-stage gun not only affords a method of heating the propellant gas, but also
of maintaining the pressure at a constant value directly behind the projectile, To
so maintain the pressure constant beliind the projectile requires that the pressure in
the pump tube increase with time at & specified rate. Thus, the proper movement of
the piston in the two-stage gun may effect this rate.

pump tube

‘The applioation of the two-stage gun to maintain the propelling pressure constant was
suggested by Curtis®® and independently by Wilenius®' and winkler®®: it is discussed
in Part X, ""The Constant Base Pressure Gun",

* The strenyth of the shooks depends on the magnitude of the piston speed; light pistons,
tiraveling at high speeds, produce strong shocks; heavy pistons, traveling at low speeds,
produce weak shocks, (The magnitude of the piston speed is taken relative to the sound
speed of the gas in front of the piaton.)
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Section 4%
The Two-Stage Gun -~ Approximate Calculation Method
To calculate by hand the events which occur in such a gun is a tedions, impractical
task. The ocourrence of shocks complicates the calculation considerably. The
methods outlined previously in this monograph may be applied to the calculation as
indicated in the following sketches.*

Quasi - Steady

Equations
7 %
— /7
D(uvta) _,
Dt

BEFORE PROJECTILE RELEASE

Shock Equations

4

D(uia')=°

Dt Shock Equations

Friction
Correction

———I N Quasi - Steddy Equations /
AFTER PROJECTILE RELEASE

To simplify the caloulation for hand computation, the following approximate
method of analysis has been advantageously used for either a light piston (shook
compression) or & heavy piston (isentropic compression) gunt.

* It is assumwed that the back chamber contains s preburned propellant. If, however, powder
propellant is used, oonventional ballistic methods (see, for example Reference 30) may be
smployed to caloculats the pressure behind the piaton. For a more exact analysis of a gun
with a burning propellant, ses Oarriere’

t (ne should note Raferences 17 and 78 through 83, where approximate analyses sre presented
for a two-stage gun system. Also see Reference 117 for the shook-heated oase.
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(&) The initial phase of the motion of the piston may be calculated by applying
the results for the preburned propellant gun performance (e.g., Figure 21) to the
piston and accounting for the propellant gas in front (Fig.22).
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(b) The piston position ?, , velocity v, , when the reflected shock has traveled
back to the piston can be calculated, as can the conditions in front of the piston,
by using the V-¥ ourve and the shock equations. (See Appendix @).
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(c) 8ince at this time the velocity of the gas in atate 3 is zero (and thus the
gas kinetic energy is zero), it is convenient to apply the first law of thermodynamics
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to tha aystem conalating nf tha nictnon ond gas in front of the pistene; the
first law is applied between the state existing in diagram C of Figure 27
(time t ;) and any subsequent state (say, state 4) of the system until the

projectile is released. Several simplifying assumptions are made:

(1) The gas in front changes state isentropically after t, (see previous
footnote®).

(11) The kinetic energy of the gas at any time after tg is equal to GV%/8 .
(1i1) The work due to the pressure behind the piston is negligible.

Assumption (1) is a good approximation because the irreversibility association
with the sacond and third shock reflections is small, as may be calculated by
the methods of Reference 32. Assumption (i1) is deduced from the approximation
of a linear velocity distribution which is valid' for low gas velocities (see
Appendix PF). Assumption (iii) agrees well with numerical results from electronic
computing machines (see Figure 28). . o

V4
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First Law: WV3/2 + Go T, = MV/2 + Geyr, + Gv2/8

P = pgll
Tsentropio et
Equations: (pu/psfﬁy‘ = T/T,

From these three equations, the three unknowns T, , p,, and V, may be obtained,

the state 4 being at any time subsequent to time to but before the projectile has
besen released.

(d) The next phase of the caloulation is for the time period after projectile release.
It 1s assumed for simplicity that sonic flow exists in the barrel entrance. The

piston motion is determined with the aid of Newton's equation by a step-by-step
numeriocal process, as shown below,

¢ In some canes (e.§., for light piston omses) it may be desirable to oalculate the conditions
at the time when the shock has gone forth and back & second time.
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The applicable equations are
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The three equations permit, for a given 85t , the molution for the three unknowns

Gy, Jp and Vp

(¢) Finally, from (d) one may obtain the value for the barrel entrance condition

of the sum u + ¢ as a funotion of time.

exist there,

u+o =

|

1o,

wWio* = S
¥ ~1
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AT BARREL ENTRANCE | !
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Bince sonic conditions are assumed to
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W
This sum remalns constant along u + & disturbances which reach the
projectile at a time At after they leave the barrel entrance position.

The time intervel At 1is approximated by assuming the u + a oharacteristic
to be a straight line, Thus,

X

t,~t* - At = 2
P Hu*t™ + a*t™] + lut) + atpl}

- 2xp

1
X2 oMeM + Uptp) +

op(ty)
2/(y-1)

Newton's equation is applicable to the projectile,
' 2
du du o\l
M-B = Mu B = pa = p°<—P> A,
" o

Along the u + a characteristioc

L . =
ot o= ou,toy roald

the complete projectile motion may be obtained by a step-by-step numerical procedure
using the three equations above. The effect of friction may be accounted for by using
flgure 22.

The approximate method outlined in this section ylelds projectile velocities which
agree well with the results of more sophisticated methods. For s heavy piston case
the method above becomes equivalent to that describéd by Charters in Reference 83
(or Refervunce 86), However, not only is the oalculation very time-consuming, it does
not yleld needed information about the details of the pressure experienced by the
projectile, In the actual situation shocks, neglected in the approximation after
the prujectile is released, travel back and forth between piston and projectile.
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These shocks, although sometimes weak, cause sharp pressure peaks which may cause
projectile mechanical failure. In some cases predictions by approximate methods of
the type outlined herc for the peak pressure experienced by the projectile have been
found to be in error by a factor as high as four, This is one reason that the use of
electronic computers to calculate more exactly the performance of a two-stage gun
becomes highly desirable,

Section 46

The Two-Stage Gun ~ Performance Calculation
by Electronic Computing Machines

To avoid the tediousness of hand calculation and to better determine the actual
pressure variations occurring, it 1s necessary to use electronic computers for two-stage
gun caloculations. The speed of these machines is particularly advantageous when it is
necessary to select loading conditions to yield a maximum projectile velocity. 1In a
given two-stage gun whioch 1s to propel a given mass projectile of given pressure
capability, it becomes neceasary to select the following parameters:

(a) The back chamber conditions.

(b) The pump tube conditions,

and
(o) The piuton mass.

(d) The projeotile release presaure, .
The numbe} of possibilities uakes the electronic computer invaluable to umse to select
the optimum parameters. This is particularly so because as of the present time there
are few general rules for guidance in the selection of these parameters, the optimum
values depending on the particular two-stage gun geometry and pressure capabilities.
i
(If, however, one is designing a two-stage gun “from msoratch’ to propel a given

projectilo at a given velocity, the use of the “oonstant base pressure’’ ideas outlined
in Beotion 47 ylelds a two-stege gun design without the necessity of as many trials.)

The most suitable scheme to the present for the electronic computer application to
the two-stage gun is the one-dimensional Lagrangian scheme discussed in Bection 27.
It i based on the “q'* method, as devised by von Neumann and Richtmyer!® !3, ‘he code
solves quasi-one-dimensiona) hydrodynamic problems, i.e., it will handle cases of
one-dimensional flow through ducts of varying oross section. Automatic treatment of
the shoock by the “q" method lends itself niocely to the solution of multiple shock
systems such us ooocur in the two-stage light gas gun. Any equation of state may be
used for the gas. This scheme is presently being used at the US Naval Ordnance
Laboratory ™ 1%¢ and Aberdeen Proving Ground??,

Another computer scheme using the method of charscteristics and the shock equations -
is in use by Republic Aviation Corporetion®?, This scheme appears applicable to the
two-stage gun problenm.
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For a given two-stage gun, firing a given projectile, the types of results cne
obtains by using the computing machine when attempting to optimize performance are
as snown in the following sketch,

V]
P (p]) 1
u
proj P
vel, (p1) )
_ 2

PISTON MASS =M INITIAL PUMP TUBE PRESS = p
MAXp, (py) MAX—- MAX, PUMP TUBE PRESS —»

W - AN .
As mentioned before, the form of these curves varies zrbatly with'the geometry of
the two-stage gun. Therefore, each gun system geometry will have specific
characteristics, In general, the larger the pump tube, the better will be the
performance of a two-stage guil,

The calculations also indicate that preheating an ideal propellant gas in the
pump tube is advantageous (msee for example, References 82 or 95).

3000* .

MAX, PUMP TUBE PRESSURE ~———

Experimental results to date are not conclusive as to the advantege of preheating the .
propellant gas. AEDC reported®? an inorease in projectile velooity from 27,500 ft/me
to 30,000 ft/sec by doubling the propellant gas initial temperature, In contrast,
Cable®® reported no gain by heating to about 400°K. (Thus, the increase in
experimental projectile velocity due to preheating is often less than prediocted by
ocaloulation, It is here speculated that this deficit is partially* due to the

* For long pump tubes there may ocour conveotive heat losses which would oontribute to the
degradation of gun performance.
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assumption that the propellant gas is an ideai gas. Actually, in many cases the
propellant gas is sufficiently dense that the intermolecular forces ara significant:
in these instances, as shown below (see, e.g., Sections 5% and 64) the dense real-gas
propellant produces a higher projectile velocity than an ideal gas propellent. By
preheating the propellant the effects of the intermolecular forces are reduced:
consequently, less gain in velocity is experimentally schieved by preheating than
expected from the calculations done for an ideal-gas propellant.)

One may, 'in principle ettain the benefits of preheating by increesing the pump tube
volume as seen in the following sketoh.

FOR SAME GUN
PERFORMANCE

PUMP TUBE
VOLUME

INITIAL PUMP TUBE GAS TEMPERATURE -—>

Typioal caloulated and experimental performance curves for two-stage guus are

_shown in Figure 28; other performance curves are given by Baer??, Stephensen®® ®!. 82

Pincesi'® and swift®®. A sketch of one of the US Naval Ordnance Laboratory two-
stuge guns 1s shown also in Figure 28. The barrel of this gun is two inches in
internal diameter.

As mentioned before, almost avery laboratory has successfully, and in its own
individual manner, titted its own experimental two-stage gun results to its own theory.
Thus, for example, good agreement between theory and experiment have been reported
in References 81, 82, 94, 27, 83, 37, 33, 108, and 14 (See Fig,28). However, as
previously noted, these comparisons, in almost all cases, lack the necessary accuracy
to assess the validity of the theory used. ’
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X. THE CONSTANT BASE PRESSURE GUN

Section 47
The Concept of Maintaining a Constant Base Pressure

*u & preburned propellant gun the value of the maximum pressure experienced by the
projectile is the same as the value of the maximum pressure experienced in the chamber.
In such a gun the pressure of the gaus behind the projectile decreases as the projectile
accelerates in the gun barrel. This is seen from the equation

2y
u ¢y-1] -1
P, = P {1 +e —-P—;';—z} (41-1)
R _

which expresses the pressure as a function of the projectile velocity in thel
preburned propellant gun.
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Only in the unattainable limit of infinite initial sound speed does the pressure not
decrease behind the projectile in a PP gun.

It would be, of course, extremely desirable to maintain the pressure behind the
projectile at a constant value. Such a possibility exists for a gun in which the
pressure in the chamber is not limited to the maximum value experienced by the
projectile, but could bas increased as desired during the travel of the projectile.
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Such a gun would not be a preburned propellant gun; it might be a gun in which the
propellant continued to burn during the projectile motion; it might be a two-stage
gun in which the piston continued to increase the pump tube pressure during the
projectile motion. The latter concept has been suggested by Curtis®®, Wilenius®7?, and
independently by Winkler®’,

Section 48

Deducing a Gas Flow Which Maintains the Base Pressure
Constant (The “Simllu ity Solution")

How should the pressure vary in the chamber so as to maintain the pressure constant
behind the projectile? A partial answer to this query is provided by the “similarity
solution” of Stanyukovitoh®®; also see Smith®%, Curtis and Charters?®:3%:87,%%
Wilenius®" ®?, and Winkler®®., This solution assumes that the gas veloocity in the
constant diameter barrel is only & function of time (not of distance). Thus,

u = u(t) : (48-1)

It may be demonstrated that this assumption yields a constant base pressure gas flow
as desired. A different and more logical approach than starting from the assumption
of Equation (48-1) 18 given below.

The quest is for a gas flow which will yleld a constant pressure behind the
projectile. One possibllity is to consider the situation in which the pressure is
not only constant for the gas layer directly behind the projectile, but is constant
(although a different constant) for each gas layer. Thus, for this situation it is
assumed that in the constant diameter flow

ap 9
5t +u o™ = 0 (48-2)

which states that the pressure does not change along a particle path. (See
Appendix A). This then is the basic assumption made.

If it 1s now assumed that the gas changed state isentropically, then

p o(p)

alone, and (48-3)

a e(p}

alone, ete, Thus, since D does not change along a particle path, each of the other
thermodynamic properties does not change along e particle path. This is expressed in
squation form from (48-2) and (48-3) to yield

3o 3p
- — 48-4
3 +u oW 0 ( )
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L S (48-5)

and so on for all the other thermodynamic properties.

The applicable one-dimensional unsteady equations of continuity and momentum are

dou 9

—-_ax + -a—t- - o (48'6)
du du 173
RIS 7 i (48-T)

Inserting the requirement for constant density of a gas layer Equation (48-4) into
the continuity Equation (48-8) results in

du
p— =0 , (48-8)
ox

Thus, from Equation (48-8), either the gas density is zero,

p = 0 (48-9)

or the gas velocity is & function of time alone, i.e.,

u = ut)y . : (48-10)
Either possibility will yleld s constant base pressure gun.

Obtaining a zero density gas (and hence an infinite sound speed gas) is not
realizsable in practice and this possibility will not be further considered.

The second possibility, that the gas veloclity be a function of time alone,

constitutes the similarity solution of Stanyokovitch and Smith and will be further
considered,

If Equation (48-10) is inserted into the momentum Equation (48-7), there is
obtained

L (48-11)
it oox

gince the left hand side of this equation, by Equation (48-10), is a function of
time t alone and the right side, in general, would be a function of x and t,
it must be that each side of Equation (4¢8-11) is equal to a constant, say, “o'. Thus,

du 19
a2 48-12
dt pox ¢ (48-12)
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and, hence, by integration with u =0 ar + =n

u = at . (48-13)

Thus, the gas velocity is proportional to time in this case in which the thermodynamic
properties do not change along a particle path.

In partiocular, the path of the particle which originates at x =0, t = 0 may be
chosen as the path of a projectile, The unchanging pressure and sound speed of the
gas hehind this projectile are denoted as b, and a, ., respectively. With the
assumption that the barrel is evacuated in front of the projectile, the propelling
pressurs is constant (equal to po), resulting in a constant base pressure prajectils.
Newton’s law for the prnjectile becomes

du
P
M— = A
at  Po
or . (48-14)
up = DAL/M

By comparing this result with the Equation (48-13) for velocity for any gas partiole,
it 18 seen that

x = pAM . (48-18)

The travel-time history of the projectile is obtained directly by the integration
of Equation (48-14)

At 2 ot
x, = 2 = (48-18)
P M 2
and
u?
x, = -?f . (48-17)

The essential thermodynamic property which determines the magnitude of the pressure
drop between the projectile and the x = 0 point may be deduced from the momentum

equation (48-12). If this equation is integrated, there is obtained for any given
time

Py

d

X . ax, (48-18)
b P

0

where p; is the pressure at the x =0 point.
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PRESSURE IN BARREL
AT A GIVEN TIME

Po

X —»

X bo——

0

With Equation (48-17) this becomes

Py
/ dp/p = ug/z . _ (48~19)
P

0
Bquation (48-19) demonatrates that a propellant with a low o as a function of p is
desired in order to have a low pressure p; at x =0 . (This is the same
characteristic desired for a propellant in a steady flow expansion from a preburned gun
chamber to the barrel).

HIGH p(p)}
Py Low A(p)

xp, Up, of t wp

This 1s true for an ideal or non-ideal gas. In the came of an idenl gas, low density
is equivalent to a high initial sound speed (or low initial density).

One might elso integrate Equation (48-12) differently to determine the pressure
difference between the projectile and the x = 0 position. Thus,

Xp Go
D-DPy = po dx = _A- (48-20)
0

where G is the gas moss between x = 0 and the projectile. It is seen that the
pressure difference ls proportional to the mass of gas behind the projectile.
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Section 49

The Variation of Gas Properties for the
Similarity Solution

The faoct that pressure does not change along a particle path is expressed by the
equation '

op op
-'5; +u -5; o (4P-1)
The expression for the differential pressure change
dp op
dp = = dt + — dx §=2
P ot ox (49-2)
bacomes, by substitution of Equation (49-1),
) L)
dp = —u—gdt +—de . (49-3)
ox ox

If the Equation (48-12) for the spacial pressure gradient and Equation (48-13) for the
velocity u are substituted into Equation (49-3), there results

d
7? = oltdt - odx . (49-4)

Upon integration from x =0 at t =0, Equation (48-4) becomes

p dp aﬂt? .
'; = -—2- -~ox (49-8)
0
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For an isentropic process
dh = dp/p (49-6)

0 that Equation (48-12) becomes, in terms of enthalpy,
h-h, = ~———-oux (49-T)

where h, 18 the value of enthalpy at x =0, t = 0. Equation (49-7) describes
the variation of enthalpy necessary for the similarity solution. It applies to any
gas with any equation of state,

Unless otherwise noted, the discussion will now be restricted to ideal gases, It
is to be remarked, however, that real gas effects will change the quantitative
results below. (See Section 57 below; also see Smith®®, for discussion of the effect
of covolume). For an ideal gas the enthalpy may be readily put in terms of sound
speed, pressuro, or temperature. Thus, Equation (49-7) becomes

2 '2
(l) e g4 QoDe :)“E’—_] (40-8)
8, 8y 2
.
_ 2 el
o e ]
Py 0 2
- 2
LA V4 :)“ E’i - } (49-10)
To L} 2

where Py By, And T, are values of pressure, sound speed, and temperaturs at
t=0, and x=0,

It becomes apparent that a constant base pressure equal to p, way be achieved on
the back of a projectile if the enthalpy is altered as diotated by Equation (48-7),
or equivalently if the pressure or the other variables are altered as shown in
Equations (49-8), (40-8), and (40-10), Thus, for the position in the barrel where
x = 0 , which shall be designated by the subscript “i"”, pressures should increasme
with time in the manner presoribed by Equation (498-9).

e

-1
LT P ‘:‘i 2 (40-11)
po 250

It is noted that the magnitude of the rise in pressurs as a function of time is
dependent on the msound speed By .
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t —» Pi P0E2222>

Sound speed and temperature will correspondingly inorease with time at the position
x=0,

~3
o

2 T
<f‘_i.> ST Ak L (49-12)
2ag

wheras the submcript “i” designates the position x =0 .

Other possibilities eximst for attaining a constant base pressure gun than varying
conditions at x = 0 ., Thus, conditions may be varied at any given x or any given
time t B0 as to satisfy Equations (49-8) through (49-10)., For example, the
pressure may be varied along the barrel at the time ¢ = 0 to satisfy Equation (49-9).

Y
_ 1
LI E 4 ,”“,J . (d-12)
Po &,

However, in practice the method employed has been to attempt to vary pressure at a
given point (x = 0) as presoribed by Equation (40-11).

Section 50

The Path of Characteristics in Eulerian Coordinates
for an Ideal Gas

The equations for the characteristic lines may be obtained by integrating the
equations describing the slopes. Thus, letting the symbols ¢ and 7 denote the
X, t ooordinates of the characteristic lines, one has for the ‘4 + a” characteristic
lines

T ouy +oy (50=1)
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ag 3~
d’; - uta - utoag, (50-2)
and
‘- R . a5, . Bpel g ) (50-3)
(Y=-Da (Y-1Da8=~-Y 4 (3-Na

where the subscript 1 denotes the conditions along x = 0, and where =& o 18
defined a8 the sound speed of the gas oh the characteristics at ¢t =0 and is a
function of the coordinate x,, of the characteristic at this time. Thus, from
Equation (50-3) with t =0,

.T

X vta
line . a
4 x.. = B0 Bog (50-4)
1 t —» 0o o(y=1)

It is noted from Equation (80-3) that every characteristic line is an identical
parabola whose vertex is displaced from characteristic to characteristic. (This was
first noted by Winkler®®), The equation for the vertex is

8 (3-Ma

X, = oDa 2. W (50=5)
vhere
t, €0
Bimilarly, for the “u - a" characteristiocs one finds
u—a:-yflmoo = uy -0y (30-8)
§-§=u-a=3;7u-.“ (80-7)
and
o w:En i u(y--?):(;-«/) - m;” [T i T:_:%o_;l’ (%0-8)

where 8., is the sound speed of the gas on the “u - a" characteristioat t =0 at
which point x = X400 (desoribed also by Equation (80-3)). It is seen that the
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“u - a" characteristic lines are also identical paraboles which are displaced so that
tha vartarar 1ia along tha narth

2

a 3 -

x = 9 -~ O.ta (50-9)
v aly-1  2(y-1) ¥

where t, > 0 . Moreover, most remarkably, the “u - a" parabolas are identical to the
“u + a” parabolas.

u+ alines




102
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is tangent to the t =axis (x = 0) at & time which will be designated at t"™* .,
Since the slope of the “u - a" line 18 zero at this point, M , the flow is sonic.

uf* = a™ . (50-10)

Inserting into this equation the expressions for u (Equation (48-10)) and for 8y
(Equation (40-12)) at x = 0 , one obtains

2

1 3y

2
uP* = el = ot = \[5—:1; a8 . (50-12)

The value of By TOT this cheracteristic is obtained by inserting Equution (50-12)
into Equation (50-8).

tﬂ_

R |P

(50-11)

at which time

Bgo = 8 . (50-13)

Substituting this into Equation (50-7) yields

2R3 2
§ = B (37T 1 (80-14)
20, 2 8,

as the equation for this characteristio. Far this "u - a” characteristic, u - o
is a oconstant which may be evaluated from Equation (50-12) ams

L] ** -
R B kL W ek 4 '—2—?0 , (50-18)
v-1 Y=-1 V3=~-v

The pressure at time t{* is evaluated from Equation (49-b) as

2
. " P
\ el N T":T;; . (50-18)

This characteristic interseots the projectile path at a time equal to

tp = s . (50-17)
=y

2

e ammamml.




103

Projectile Path

90 = % \J (3= v)/2 |

Section 51
Do Shocks Ocour?

It 18 seen from an examination of the expression for the slope of the “u + a”
charaoteristios line (Equation (50-2)) that these characteristics tend to converge.
(This is also evident from a sketch in the x-t plane). Hence, it hecomes of interest
to determine if the characteristics lines will intersect to form a shock.

Examination of the equations for the characteristics in the case when no projectile
is present reveals that a shock 1s not formed. (This conclusion is obvious if one
looks at the characteristics in the Lagrangian coordinate system - see below).

Although the characteristios do not converge to form a shook, they do become tangent
to a parabolic envelope; the equation of this envelope (obtalned from the cnndition
(def/daoo),, =0, is

2 2 T 20 for u+ a lines
Sany = bl - QL S me (81-1)
2 oy —~1) Tgwy $O for  u - a lines

By e ——

et
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Thus, part of this parabolic envelope is parallel to the path which the projectile
wanld have 1f nrosent and is

- - . 2 B P
iz thit distauce uO/IUL\)"'.L) aneada or 1it.

x do vta
lines

e o~
P Projectile
“ Path
. t—»
/s / /\ \\
¢+ this envelope the pressure p , sound speed & , temperature T , etc,, are all

zerv., Calculation demonstrates that beyond the envelope the quantities p, T, a,

etc., are imaginary or negative, Thus, the region beyond the envelope does not exist
in reality.

’ 2 2
1 € =°TENV + do
ENV 2 a(”-1)

Region not|realizeable
physically

Envelope projectile path

= t —>

Section 52

Paths of Characteristics in Lagrangian Coordinates
for the Ideal Gas

'the equations of the characteristics are particularly simple when expressed in the
Lagrangian coordinate system. The continuity, momentum and characteristics equations
are the following (See Courant and Friedrichs'®):
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ot

where

x(H,t)
H = Jr £ dx
x{0,t)

- )

(wWto) & t o
— o' —
u ap (u )
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(52-1)

(52-2)

(62-3)

the mass per unit area of gas from a given point in the flow to any other point. It
is noted that the slope of the characteristics in the H-t plane is equal to the

acoustic impedance (i ap).

The assumption that density is unchanging for a particle is expressed as

&) =

from which, by the continuity equation (82-1),

=), -

or

u = u(t) alone.

The momentum equation then becomes

&), - -6

where o 18 a constant, Thus,

and

p'po = ~Ha

(52-4)

(52-5)

(52-6)

(52-T)

(52-8)

(52-8)
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ar
P it (52-10)

where H 1is taken equal to zero when p = P, - Thus, the H = 0 gas layer is the
layer adjacent to the projectile with pressure equal to p, . The mass of gas behind
the projectile to the point in question, -HA, may be designated “G’. Equation (52-10)
then bhecomes

p/p, = 1+GM . (52-10)

The equations for the u + a characteristics are obtained from the relevant
relation

u+o = atp + o, (52-11)

where tp is the time that the u + a characteristic intersects the projectile
path (the H = 0 path). Since

r=1 r=1

— —

o p\?% HA\ &
— = - = ] - (62-12)
o Py M

for the “u + a" characteristic, Equation (52-11) becomes

27.

AH o 7-1
{l-r— = 1 +—(t, -1 . 52-13
- [ = % ﬂ (52-13)

It 1s interesting to note that in a system of Lagrangian coordinates, using a linear
coordinate (e.g., X,,) rather than H , these characteristic curves would be
parabolas. This equation may be differentiated to obtain the slope of the
characteristic on the H-t diagram

s
dH o Lt
-_— = 1 +~—(t, -t = 52-
0 8,0 [ = ( P )} ap (62-14)
pad '
AH 2y .
= 840, [ --F] . (52-15)

The "u + a* characteristics are thus seen to be identical curves which are displaced
one from the other in the t direction by an amount equal to Atp .
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Similerly, the equation for the u - a characteristics is obtained from the

equation
u-o = atp -0
and 1is
[ 24
1 Mo 1 (t t) &
The slope is
pad
dH r-
— = ~-ap = - 1 - — (t
dt P a°p°l: ( El
r
AM %
= -ag, 1 - M

(52-16)

(52-17)

(62-18)

(62-19)

—

M/A

|

Projectile
Path

u=a
lines
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Thus, the ‘u - a" characteristics are identical curves displaced in the t direction
by Ot . Moreover, they are seen to be the same curve as the “u + a” curve but
reflecged about the H axis.

Both sets of characteristics form an envelope about the line H = M/A on which
pressure, temperature, density, and sound speed are zero. 1In the sketch of the
characteristics are also shown the projectile path (H = 0) and the path of the
x =0 line,

Section 33

Pressure Requirements in a Chambered Gun to Obtain
a Constant Base Pressure - Subsonic Flow, Ideal Gas

It appears that one practical method of partimlly satisfying the requirements of
the similarity solution is to use a chambered gun; the endeavor could then be made to
increase the pressure in the chamber so as to increase the pressure at the entry to
barrel as prescribed by the similarity solution, Equation (49-11).

Y

~-1a? |7
El = |1 + .(l_ﬂ_. tf , (53=1)
P, 28,

Correspondingly, the temperature and sound speed at the barrel inlet would vary as
given by Equation (49-12). :

8y 1+
2, 2
a, 29.o

~1)0?
(L_)q_ t’i (53-2)

-—]I._:-]
<

where the subscript *“o” refers to the constant conditions behind the projeotile.

The conditions in the chamber, denoted by the subscript “c”, may be related to those
at the barrel inlet by the quasi-steady equations of energy and continuity. If the
area ratio A /A; 1s sufficiently large

a? (53-3)

2 2 .
> -1 8y + uy =
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From (53-2) and Uy =ty , Equation (53-3) becomes

82 = ai+ (y-1 ot (53-4)

from which, by the isentropic relations, the chamber pressure variation is obtained as

& = 1

p 2
0 a,

(y-na? |71
$ L2022 . (53-5)

The flow at the entry to barrel becomes sonic (see Equations (50-10) and (50-11)) at

2
tPr = g 2o (53-6)
3-7Y
at which time
2
u?* = at* = a&?* = AT > 8, (53-7)
and
L
2 |t
p;* = p, —-:7; (53-8)
and
- 2 |
v+ 17!
pi* = p°|:3-):| . (53-9)
T |
| ;
P Pe |
|
|
Pi I
o |
I
| t —>

'.i*
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When the conditions at *i” become sonic, further pressure increases in the chamber
will cause the velority to increase at “i" but the flow will remain sonic for
isentropic flow . The similarity solution, however, assumes that the flow becomes
supersonic at the barrel inlet, as seen from the cquation for the inlet Mach number,

4 y 1 (53-10)
<31> T (agfat)? 4 (y-1/2

e 1778

~ — — Similarity solution

—
——

.EIE. —»
|
|
|
|

—

] e — — chambered gun

|
|
o 1 "i—.-

(e .

; Thus, for isentropic flow in a chambered gun, the similarity solution requirements
cannot be satisfied after sonic flow has been reached. Thus, Equations (53-68) through
(53-9) hold only for times less than tr* for s chambered gun.

Section 54

Pressure Requirements in a Chambered Gun to Obtain a
Constant Base Pressure After Sonic Flow is Reached for an Ideal Gas

The reguirements for constant base pressure in a chambered gun after sonic flow
is reached at the barrel entry may be obtained by use of the method of characteristios.
The x-t diagram sketched on the following page shows a few characteristiocs.

The similarity solution applies to the region A-B-t™. The path of the “u + a”
characteristic B-C-t"* which is the boundary of this region may be obtained, if
desired, from Equations (50-1) and (50-3). The time t, , when this characteristic
intersects the projectile path, may be directly calculated from the characteristic
relation

2
u' + ™ = uy +op = aby +
y-1

(84-1)

y-1°
from which, by equation (50-11),

- 2a, [’)’+1 [ 2 - :l ‘ (54-2)

tB
(v-o| 2 V3-y

¢ This is not necessarily true for non-isentroplc flow, It is possible to obtain supersonioc
flow at the inlet by raising the pressure so as to cause shocks which enter the barrel
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projectile

w path
B

u=a
characteristic

It 18 to be noted that at this time t, the projectile is traveling st & speed equal !
to ‘

u, = aty (54-3)

with a “Mach number” ug/a, equal to ;

% . _2 [7”/2 -} . (54-4)

8,  Oo-n| 2 V3-v

: ‘ For a ¥ = 1.4 gas this Mach number is 1.70. The similarity solution is thus
: satisfied until the projectile reaches this Mach number.

: The flow conditions outside of the region A-B-t** may be obtained using the
{ : characteristic equations

D(uuf 2 g (B4-5)
and the following boundary conditions:
; At x = 0, t 2t uy =uf = 8 = a} (54-8)
, and at the projectile
: | ) u, = atp, o =0, =0 (54-7)

: ( The star (w) indicates sonic flow; the subscript “p” indicates the projectile.
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Afles iime ¥, the conditions at the 1niet are related to those at the
projectile by consideration of the “u + a" characteristics., For each such
characteristic the sum of u + o at the barrel inlet may be related to that directly
behind the projectile

AR R
o T STl T ro (54-8)

uf+of = u

or
*
- 2 -1 R
.El = ')’_‘l _l.’.P..{. = 14 EEE + 2 R (54-9)
&, ’)'+la.0 Y - v +1 8, v-1
From this follows
2y
W y=1
- 2
—p—i- = Y .OEE b mmrn . (54~-10)
po Y+ 1 ao Y -

Equation (54-10) expresses the relation between barrel inlet pressure p“' and the
corresponding time along the u + a disturbance at the projectile tn . However, it
18 desired to obtain the value of this pressure versus time, t; . at the barrel

inlet. Thus, the problem resolves itself into determining the relationship hetween
the barrel inlet time ¢, end the projectile time 1:p on each u + a characteristic.
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The sketch shows the x-t disgram applicable to & chambered gun. The line t™'-R
is the u 2 charactsrisiic sviug bhrough the point %, The line C-E is the

path of & u + a characteristic,

It one attempts & numerical solution by the method of characteristics in the region
E-B-t**-R , it becomes quickly obvious that the conditions in this region are those of
the similarity solution, For example, point G 18 determined from points E and B,
both of which follow the similarity solution. Hence, s0 also will point @G .

(S01th®%, refers to the characteristic t"™-R as the “limiting characteristic”).
Thus, the problem reduces itself to a numerical characteristics solution in the region
R-t*™-8 . The solution includes the sought-after ralation between t, and ¢t_ .

This relation has been obtained numerically in Reference 356 and also, approximately

in Reference 37. An exact analytical solution for the region R-t*"-S has been
obtained by Somes®®, for & < = 5/3 propellant gas (see Equation (54-15)).

The results for pressure at the barrel inlet Py and in the chamber p, ,
assuming large chambrage, are given in Figures 29 and 30 for various <’'s . It is to
be noted that after t™* the pressure required at the barrel inlet is higher than
would have been required by the similarity solution in a gun with no chambrage.

CHARACTERISTICS
SOLUTION ( CHAMBRAGE)

SIMILARITY
SOLUTION }

L fl —
e
h
T 4 SIMILARITY
>
Q<
Ui $¢ T
Gaa
|
} |
! hr | g
Wk t L 1]
¢ I
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Caleulation also indicates that after t¥™ the velocity at the barrel inlet becomes
quite a bit less than given by the similarity sclution and that the mass flow into the
barrel is only slightly leass than the similarity solution result.

It is again seen that, if the initial sound speed for an ideal gas propellant is
high, the pressure rise in the chamber is correspondingly low.

fi —————

The results oited above for the ideal gas may be obteined in an approximate manner
as related in Reference 37. There it is pointed out that the determination of the
relation between ti and t, on the same u + a characteristic may be obtained
approximately without resort to a numerical characteristics solution by either of
the following:

(1) assuming the u + a line C-D (see sketch) to have the same path as the
charscteristic through point D in the similarity solution, or

(11) assuming the line C-D to be a straight line of slope equal to the average
of those at D and C, '

The first assumption yields

ot t 2 -1 ae\ ]t 2
Xty _ 8% TR A il A L (54-11)
B, 8, -1 2 \s& r-1
]
from which is obtained
2y

2 -1 -1)a?
P y-ley | 6+(7 Yo t’> . (54-12)
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The second assumption ylelds

- t 2
2[\,—2’3—9 - 1] (7+1)
aty,  at, 2 a, (54-13)

T —

. t
o R (7’+107—v)9;—9+<7+5) NG - 78
]

ot ot 2 3 -
Sy - g%y 2 1-\[__y . (54-14)
8, a, (y-1) 2

The approximate results obtained by using the first assumption, Equation (54-12),
have been compared to the exact analytical solution of Somes for a 7y = 5/3 gas
which may be expressed as

t 48 ¥ (g '
ok WU AU S .2 Ay V2 54-15
e, [:11 T % Taz0 7 ( !

where

where

* » *\i/8
u S
RS S S .11 and t, 3t
38, 38, 3\p,

The approximation is excellent, as seen from the values of p’{/po in the table (a
plot would show almost no difference). '

%
. YAl as | w20 | aasrs | 10
L (=37 '
Exact

From Reference 17 " 2,755

| 41T 7.6894 12,097 243.0 18, 040
Equation (54-15)\

Approx,

From Reference 37 2.766 4,776 7.687 12,089 239.0 15, 578
Equation (54-12)

% error 0 0.02 0.09 0.23 1,66 2.87

Thus, all the barrel entry oonditions (u} equal to a}, o}, etc.) may be oalculated
from Equation (54-12) for the times beyond t‘f* .

oo snatESAessnn osuSN H I s S it
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Section 33

Required Motion of Lhe Pump Tube Piston
When it Enters the Barrel

Heretofore, the possibility has not been considered that the piston, being
deformable, might enter the barrel during the projectile travel.

Deformable Piston

N\

Projectile

Pump Tube Propellant Gas m

Piston Front End

This situation can occur, for example, if the initial pressure in the pump tube is
sufficiently low. The question arises: Is this an advantageous method of maintaining
constant base pressure? An answer to this query is provided by determining the velocity
required of the piston front end when it enters the barrel. The motion of the piston
front end, when in the barrel, is to be that required to continue to maintain the
pressure constant behind the projectile. Hence, the piston front end must travel at

the velocity of the gas perticles in the barrel es determined from the constant basge
pressure gun solution .

1.

X

Particle paths

t—>p

fe——— uj =at -ais i =0j =g* —p

* This disocussion agsumes that the u + a disturbance initiated from the piston front end will
arrive at the projectile before it is out of the barrel.
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Thus, a plot of velocity of piston front end as a function of time would appear as in
the sketch.

Dll
Projectile Velocity c Piston
Front End
T Velocity
iy D'/ _ A~ 1\"
-~ C L Barre| entrance
Velocity
B! |
Al ' N
: time piston enters barrel
] t ——p
A B ' C D

The required velocity time history of the piston front end is indicated by the arrows.
If the piston enters at a time before t?* , the front end must travel at the
projectile velocity. Thus, the velocity-time for piston entry at time t, is the
line A'-B’-C”-D". If the piston enters at a time after t;* , its velocity will
initially be the velocity of the gas at the barrel entrance; thereafter, the piston
front end must accelerate until it reaches the velocity of the projectile. Thus, for
example, let the case in the sketch where the piston enters the berrel at time t, be
consid?re%; the velocity-time history of the front end of this piston will then be the
path C'~C",

It 18 obvious that to attain and control the needed very high piston velocity that
is required as shown above, is prqbnbly not possible. It is therefore concluded that
the entry of the piston into Fhe bprrel {8 undesirable as a means to maintain the base
pressure constant behind the projectile. This conclusion seems to be in agreement
with comments of Charters anq R.N. Cox (page 403 of Reference 94).

t
! Section 36

i
Methoﬁs of Achieving the Desired Chamber
Pressure Yariation

It has been demonstrated that the pressure in the pump tube must change with time
as indicated in Figure 29 for sn ideal gas to attain a constant base pressure behind
the projectile, Methods of obteining the desired pressure-time variation in the
chamber, or “matching’, are discussed in References 35, 36, 37, and 40. The final
‘words are yet to be written. 1In all cases the pressure of the gas in the pump tube
is increased by means of the piston motion in a two-stage gun,
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The following schemes have been proposed to match the pressure rise in the pump
tube with that required for a constant hase pressure behind the projectile,

(1) Matching by the proper selection of piston mass, pump tube geometry, and pump
tube initial loading conditions. (See Smith’%, Winkler®® and Wilenius®").

Ve
;Proper/ proper

Episfong initial py, Ty @

mass

/]
il

By Judicious selection of the above parameters a reasonable match may be obtained.

Calculated after

T matching

On- difficulty of this method is an undesired rapid rise of pressure in the pump tube
after the matching has ended.

(11) Matching by the provision of available pump tube volume (grooves) which are
excluded during piston travel.

% !

This method of matching has the disadvantage that the number a.;xd slze of grooves
required make it impractical’S,
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Walcilas Ly baving usificves aloug e leugilt ul Liw pump Lube to ziiow part

Viilly
of the pump tube gas to leak,

LU ——

This modification of the pump tube appears to offer the possibility of perfect
matching and scems mechanically feasible. (See References 35 and 36).

1
4l

(iv) Matching by the use of a conical taper to control the snd of the piston motion,

N\

This method does not permit perfect matching, as seen from the analysis of Smith®®,
However, it has experimentally yielded the highest projectile velocities (Charters®" -
sketch of the gun used is shown in Section 70). It offers the advantage of permitting
the piston to be stopped without unacceptable damage to the pump tube. (See alsc
Curtis and Charters®® ®? and Cuble!®?). The angle of conical taper which seems to
have yielded the hest experimental results is around 4-degree half-angle®%: %%,

(v) Matching-by the use of a taper whose oross-sectional area is varied as a
function of its length to effect the matoh.

MATCHED TAPER

PUMP TUBE

\<
e

This method seems to offer promise but more study is required to determine its
feasibility.
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(V1) Malchlng by the use oI Orilrices in the pistoun.

DIAPHRAGﬂi ?7/////// K\

This method offers the possibility of matching for many different firing conditions
without having to remodify the pump tube.

(vii) Matching by use of two pistons in the pump tube. Piacesi®®, describes this
possibility of using two pilstons separated by gas in the pump tube to maintain the
pressure behind the projectile. This scheme, used in conjunction with one of the
methods discussed above, may be advantageous.

In all of the methods described above, pistons are used to compress the pump tube
propellant gas. When the piston accelerates to compress the gas in the pump tube,
shocks will actually form, their strength being proportional to the square of the
piston speed. These shocks may well cause “splkes’ of pressure to be supsrimposed on
the otherwise constant pressure at the base of the projectile.

L A ——

Thus, in the design of a constant base pressure gun, it is recommended that, after
using one of the methods to select the gun system parameters, the actual performance
be obtained from a computation which accounts for shocks such as described in
Saction 48.

Large pump tube diameters would avoid the occurrence of strong shocks by
permitting the piston velooity to be decreased. However, this may not be a practical
remedy.

At the present time the best method of matching has not been decided. However, the
matching requirements of all of the above methods seem to demand relatively large
pump tube volumes; also, the constant hase pressure gun takes advantage of having
long caliber barrels (e.g., 400 calibers), whereas, conventional gas gun barrels are
relatively short (around 200 celibers) before frictional effects dominate.
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The above methods_allow one to design guns on paper to fire projectiles at velocities
| around 50,000 ft/sec . Whether such velocities will be realizeable in practice will
require experimental trial. The pressure capability of the pump tube becomes the
limiting factor in the design. An expendable, deformable, part of the pump tube which
will withstand perhaps a million 1b/in? offers the possibility of achieving even

;
!
L higher velocities. Confidently, it is predicted that such velocities will be attained
% by use of the constant base pressure concept.

i

} : Section 37

. Remarks on the Effects of Non-Idealities on
i the Performance of the Constant Base Pressure Gun

The effects of non~-idealities on preburned propellant gas behavior are discussed

in Part XI. Here these effects on the constant base pressure gun performance will
be examined.

The disocussion has largely been limited to the use of ideal gas propellants in the
constant base pressure gun. However, the actual real gas isentropic behavior must be
used to determine the performance of the gun. The constant base pressure requirements
for a gas with any equation of state satisfy Equation (49-5), viz.

d

f—ﬁ = a2 -0x . - (57-1)
L

Po

In particular (see Equation (48-18))

Py
f W
p p

0

el

. (57-2)

The real gas n-o isentropic relation may be inserted into Equation (57-1) to obtain
the required pressure-time relation for the real gas. The energy relation between

chamber and barrel is
Po 2
d u
f ® .4 (57-3)
Ie) 2
p

and again real gas date may be used, Smith®® has inserted the equation of atate of

the Abel co-volume gas into these equations to obtain the similarity solution for the
Abel gas.

* 0f course, in any design real gas equation of state effects must bs accounted for; msee Baction 57.
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i1t 18 shown in Sectijon 63 that real gases at high density, where the repulsive
intermolecular field predominates, yield a larger jdp/p (which 1s equivalent to
enthalpy change) than ideal gases. Thus, it ia seen from Equation (57-2) and (57-3)
that the performance of a dense propellant gas (such as the covolume gas) will be
hetter than the ideal in the constant base pressure gun.

As pointed out below, another way to understand this gain in velocity in a quasi-
steady expansion of a dense real gas relative to en ideal gas is to note that the
enthalpy is greater for the real gas. Thus, for an Abel gas the enthalpy is

Jao/p = n = ¢ T +pb

The additional term pb , which the ideal gas does not have, 1s an additional energy
term yielding better gun’performance in a constant base pressure gun for the Abel gas.
Smith's computed results®® confirm this.

It heppens, therefore, that if high densities occur in the propellant gas, the
effects of non-idenlities must be accounted for in calculating the requirements for a
constant base pressure gun; the actual real gas data must be used.

As a result of the real gas effects of a dense propellant, preliminary calculated
results indicate that, for a given projectile velocity and maximum pump tube pressure,
the two-stage constant base pressure gun using a real gas has a significantly smaller
pump tube than calculated for an ideal gas.
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il is wlsu noled Lnat the temperature rise tor the real propellant gas is less than
for the ideal propellant gas.

To account for the non-ideal effects, it is convenlent to approximate, as pointed
out in Section 66, the behavior of the real gas by the following seml-empirical
entropic equation: '

1
p(8-2)/8 <;, f> =« (57-4)

where B, f, and « are functions only of entropy. (This equation was used by
Seigel"’ to describe dense gas behavior). It is seen that this equation is equivalent
to tha Abel equation for a given entropy if £/(5-2) 1is replaced by 7, and if f
is replaced by b ; these constants, however, will change for each different entropy.
The expression for enthalpy becomes for an isentrope

. 2
p =
dp : 1 A
h-h, = — = p,f —p——l +é Py [— - -_B- -1 } (57-5)
P P, 2 Pa Py
Py
The similarity solution requirements for maintaining constant pressure become, from
(87-5) and (57-1),

2 .

1 1 B al?
B! 2| 428, (= )2 -1 = Ioax (57-8)
Po 2 Py Py 2

from which the variation of pressure p, at the barrel inlet (x = 0) as a funotion
of time is

1 1 A alt?
b2 |2 g +2pp, (== g)|(BLY -] = 224 (57-7)
0 o]
P, 2 Po D, 2

The relation between the barrel inlet conditions and the chamber pressure is, from
(57-5) and (57-3),

2
8
2 (&’) -1 2
1 t
-4 = pyt pJ-—l +,3D1 —_—-1 Py = () . (57-8)
2 Py Py 2 2

Smith®® has evaluated these equations for an Abel gas to apply to a hydrogen propella.nt'.
He points out that the effect of the molecular volume is to increase the sound speed
above its ideal gas value and thus in most cases the flow never reaches sonic at the

* Smith’ s results for hydrogen sre in doubt, since he uses a constant covolume, whereas the
avallable hydrogen isentropic data cannot be fitted with a constant covolume in the high
density region.




124

barrel inlet. Hence, the similarity solution equation (57-6) is sufficient; the
characteristics solution beyond Lhe limiling characteristic is unnecessary. Of
course, if the flow does become sonic, a characteristic solution must be computed.

Since the density reached by the propellant gas in a constant base pressure gun is
relatively very high, it is particularly important to use the true gas data.
Unfortunately, reliable isentropic date for hydrogen at high densities are not
presently available, Wooley's hydrogen data’® have been extended to high density
and the results fitted, in reference 100 to Seigel’s semi-empirical equation (57-4).
A plot of the fitted constents is given in Figure 45. Until more reliable data are
forthcoming, it is recommended that Equation (57-4), with the data of Figure 45, be
used to approximate the behavior of dense hydrogen.
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XI. THE EFFECTS OF PROPELLANT GAS NON-IDEALITY

a METAF A B e - .- ———— e -
ON THE PERFORMANCE OF FREDURNRD FHUPELLANT GUNS

Section 58

The Criteria for Propellant Gas Performance
In an Xy =, PP Gun

The assumption that a propellant gas behaves as an ideal ges implies that the
following conditions are true during the expansion of the gas:

(a) The number of degrses of freedom which are energized remains constant.
(b) The number of gas particles does not change.
(c) The forces between the gas particles are negligible.

However, if the temperature of the propellant gas is sufficlently high, conditions
(a) and (b) are not satisfied; 1if the density is sufficiently high, condition (c¢) is
not satisfied. In these instances the behavior of the propellant gas (and hence of
the projectile) may deviate significantly from that for the ideal gas case, (It has
already been noted in Section 57 that the non-ideality of hydrogen in a constant
base pressure gun must be taken into account).

1

In comparing the performance of the actual or real propellant gas to that of an
1deal gas, the view is taken here that before expansion the two propellant gases are
at the same initial pressure (po) and the same initial temperature (To)'. During
the expansion the pressure-velocity (p-u) ocurves of each of the propellant gases
behind the projectile may be compared; the propellant gas with the higher curve will
yleld a higher projectile velocity.

T better propellant gas
Po
not as good
Yp —

The determination of which gas properties control the velocity increase for a given
pressure deorease may be obtalned from an examination of some of the previously
obtained fundamental gas dynumic equations which characterize the propellant gas
expansion,

* A similar analysis has been applied to shocktubes by Seigel'.

t Of course, there are other possible initial conditions to be used for a comparison (e.g., the
comparizon may be made for the same initiel pressure and initial internal energy, or tor the
sane initial pressure and initial sound speed, end so on).
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A chambered, x, - © gun will be considered; the gas flow will be assumed
loenbiuple,  Fur Lhe consiwi diameter chamber sectlon and tor the constant diameter
barrel tube section the one-dimensional unsteady flow theory yields the results that
(see Section 7).,

du + dp/ap = 0 . _ (58-1)
This equation applies to both real and ideal gases.

The conditions within the transition section are approximated by the quasi-steady

flow energy equation and the isentropic condition to yield in the differential form
(see Section 15)

udu + dp/p = 0 . (58-2)
Here, agrin, the equation applies to both real and ideal gases.

Equations (58-1) and (58-2) are the fundamental equations of the propellant gas
flow in a chambered x, = gun. They are derived on the premise that the flow in
the constant diameter sections is one dimensional and that the flow throughout the
gun is isentropic; no assumption as to the equation of state of the fluid has been
made,

As discussed previously, it is evident from equations (58-1) and (58-2) that the
velocity gain for a given pressure drop in a constant diameter Xp =%, PP gun is
inversely proportional to “a¢d' (the mcoustic impedance). Hence, for such a gun the
requirement for & good propellant is one in which ap is low as a function of p for
the isentrope.

The situation is different in a chambered gun; flow occurs both in the constant
diameter chamber and barrel sections, and in the varying diameter transition section;
in the latter section the velosity gain by Equation (58-2) for a given pressure drop
is inversely proportional, not to ap , but to © (the gas density).

To review the situstion in & x, = o, PP chambered gun, let us consider the sketch.

R
/' e

[¢]

/ DISTURBANCE
__dp =% =%
du =~ ap vdu - du ap




L
j
{
:

127

Tt may firstlyv he raasonead. am in Saction 18 that the nre of chamhraga with s oiven
driver gas increases the projectile velocity relative to that in a constant diameter
X, =@ gun, since

u toyp o, .
(See Equation (16.4)).

In the chamber the velocity increase for a given pressure drop is inversely
proportional to &g ; in the transition section the velocity increase for e given
pressure drop is inversely proportional to o . 1In the barrel it is seen that for
u + a disturbances traveling from the barrel entrance “i” to the projectile *p”, the
velocity grin is inversely proportional to ap .

Thus, the requirements for a good propellant in en X, =0, PP chambered gun of
fixed geometry become apparent; to minimize the pressure drop for a given velocity
galn, the following may be stated:

(1) In the x, = o constant diameter chamber section & low ao as & function
of p is desired.

(i1) In the transition section a low o as a function of p is desired.

(111) In the constant diameter barrel section what is desired is probably a low
a0 as & function of p . (This requirement cannot be stated with certainty
since a low ap only insures minimum pressure drop along a ‘v + a”
disturbance. As the flow conditions et the barrel entry become more steady,
then the entire flow in the barrel is described by the equation

ut+to = uy +0y = up+ap

and then a low a2 as a function of p is definitely desired)‘.

From the above, requirements for minimizing the pressure drop for a given velocity
gain in an x, = ® , PP chambered gun are seen to be different, depending on which
part of the gun is being considered. However, in most instances the qualitative
performance of an X, =0, PP gun with large chambrage is charmcterized by the flow
in the transition section without regard to the flow in the uniform seotions,

Thus, the cheracteristic of low o becomes the criterion for the best flow in a
gun with large chambrage.

Accordingly, the criteria for a qualitative comparison of an x, =, PP gun
propellant gas performance are the following:

(1) The lowest a0 as a function of p for the isentrope for best constant
diameter gun performance.

* It is to be noted that this result is not necessarily true for guns which are not preburned
‘propellant guns. FPor example, it develops that for a constant base pressure gun a low “o”
as  function of p 1g desired in the barrel to minimize the pressure drop (see Bectlion 48),
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(11) The lowest o© as & function of n for tha imentrone for hast in€in
chambered gun performance.

In most instances an examination of lhese thermedynamic quantities ap end p for
the isentrope in accordance with criteria (1) and (i1i) is sufficient to determine the
relative meriEs of propellant gases (and thus to determine the real gas effects on their
performance). These criteria are used below to compare the qualitative behavior of
real gases with that of ideal gases at the same initial temperature T, and pressure
p, . For this purpose, it is convenient to record the equations for the ideal gas
relating o and ap to the pressure p for an isentrope. (See Appendix J).

ol
[ p\¥
ae = ( — >Do <~—> (58-3)
RT, Do
L
Y
o = Lo <_p_> . (58-4)
RT0 b,
Section 39

The Method of Calculating the PP Gun Performance
With a Non-Ideal Propellant Gas

The charaéteristics equations previously derived in terms of the Riemann
Function ‘0" for the oconstent diameter sections are

9 3
% (uto) + (uta) . (uzo) = 0 . (69-1)

The conditions at the exit and entrance to the transition mection are related by
the quasi-steady equations

2
“0

2
Ji o = n, - -
2~k = [tao/p = ng-n, (69-2)

Pe

(ouA)y, = (cuA); . (58-3)

Newton’s equation for the projectile is

. (59-4)

* In some ouses the qualitative detarmination may require some calculetion. For example, if ae
of one gas is lower in one reglon of p than therap of the other gas, and is higher in another
region of p, an estimate of the relative areas ;dp/ae must be made to compare the gases,
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The evaluation of

p = po)
a = a(o)
\ (59-5)
p = plo)
h = h(G‘)J

for the isentrope of the gas may be done from tabular values of gas data. If possible,
these tabular values may be fitted to empirical equations, as outlined in Section 66,
to facilitate the calculations.

The equations above, with the given gun geometry and the initial conditions of the
propellant gas may be solved in a step-by-step fashion to yleld the complete behavior
of gas and projectile. In the general case of a finite length chamber the calculation
becomes too lengthy for hand computation; an electronic computer is required.

It x, =, and DO/Dl =1, quasi-steady equations (59-2) and (50-3) are
unnecessary; the pressure-velocity relation behind the projectile may be obtained
from the simple wave equation

u+o = o (59-8)

or
Py
u = [°dp/ap . (59-T)
p

Henoe, an integration of thermodynamic gas prqperties alone is enough to obtain a
p-u relation for the real gas expanding in a constant dimmeter, x, =, gun,

However, in the case of an x, = @, chambered PP gun the p-u relation behind a
projectile chn only be obtained by use of all the equations above. Thus, the pressure
at the beginning of the barrel, p, , may be obtained as a function of the velooity uy
from the simple wave equation

U, +0, = 0, (69 -8)
and the quasi-steady equations (50-2) and (39-3) with the state equations (59-5).

But conditions at barrel entry, 1 , may be related to those at the projectile, p .,
only by use of the characteristic equations and the knowledge of the projectile motion
(1.e., Newton's equation), Hence, a p-u curve for a chambered gun requires the
complete gun oalculation, whereas for the constant diameter gun only a knowledge of
the gas data is required.
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To avold the required calculation, the approximation that the gas is at sonic
velocity at the beginning of the barrel 1s sometimes made for high velocity guns.
In that case o -

Ui.._.g

u = 8 {59-9)
and

wy toy = ougy+ op (59-10)

The pressure behind the projectile may then be evaluated as a, function of the velocity.

Sonic
Approximation

Actual

[¥)
p—e

(In the oase of the shocktube, the contact surface remains et a constant velocity;
consequently, the p-u relation may be obtained for a chambered or unchambered
shocktube from the thermodynamic properties of the gas alone.)

Section 60

The Application of the Criteria to a Propellant Gas
at High Temperature

At room temperature the molecules of a gas are in translational and perhaps
rotational motion. As the temperature is elevated, energy is imparted not only to
the translational motion and rotational motion but to vibrate the molecules, to excite
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und ionize ihe stums, and (u dissucisie Lite molecules, Wuen snergy is imparivd Lo
these additional energy “sinks’’ as the temperature is elevated, the specific heats
increase and the ratio of specific heats, 7 , decreases. However, after elevated
temperatures have heen reached, further energy transferred to the gas again is
imparted only to translational motion, and the ratio of specific heats, 7y, will
increase. The decrease and increase of 7 may occur again if at still higher
temperatures further energy sinks (e.g., ionization) become available. Eventually,
when all the poasible dissociation and ionization have occurred, the value of -y will
be that of m monatomic gas, 5/3. The <y variation for hydrogen gas 18 sketched

for a constant pressure and for a constant entropy.

‘06" omm———
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In general, for heated propellant gases the value of <y is less than it would be at
room temperature,

An approximate method of accounting for this change in 7y during the expansion of
the propellant gas 18 to assume the isentropioc relation

p = AK(s) (60-1)

where K 1s a constant for a given imentrope and the exponent ‘“n” is fitted hy the
equation to the actual isentropic p-0 relation. Thus, n is not equal to the
ratio of specific heats % , but is an “effective 7" for the isentropic expansion.
Bjork*? has pointed out that & constant n, velue for hydrogen isentropes fits the
caloculated data very well (see Section 86) .

* However, the hydrogen data Bjork uses does not take into sacoount the non-idealities due to
high density.
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Since at the high temperatures the < 18 generally lower than that of an ideal gas
at lower temperature, the exponent “n" is also generally less than the 7y of the
ideal gas,

Because of the ionization and dissociation that occurs at elevated temperatures, the
number of particles (atoms, molecules, ions, and electrons) is increased. As the
propellant gas expands the number of particles decreases, Thus, the thermal equation
of state takes the form

p = p(1 + BRT (60-2)
where G 1is the fraction of the additional perticles and is obtained from a fit of
this equation to the real gas over the range of the gas expansion. The variation of
o for hydrogeq gas is shown in the sketch.
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Equations (680-1) and (60-2) thus epproximate the behavior of & real gas expandink
from a high temperature, N
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From these equations one finds for the isentrope

n+1l

;F=:E;££=- AR (60-3)
ap = —_ -
P (1 + 2)RT, \p,

and

1
p p\?
p = — [ (60-4)
(1 + 8)RT, \b,
where the subscript 0" refers to the initial state.

If ap and o are compared to the corresponding expressions for an ideal gas at
the same initial pressure and temperature, the following ratios are obtained:

2
S mamr o T\ T (60-5)
(80) 1 gqn1 Y1+ B P
Lo
n Y

(Prea1, nigh v . _1 <_"..) , (60-8)

({0 1q0n1 1+3\p,

Upon examination of these equations, it becomes obvious, since n 1is less than 7
and G is positive, that these ratios are both less than one; that is, av and p
for the roal ges are less than the corresponding quantities for the ideal ges. (This
is true even if & is equal to zero, which is the case forno ionization and
disscciationy. Verification of this is seen in Figure 31, where these ratios are
plotted as & function of p for the expansion of an air isentrope with initial
conditions of pressure equal to 100 atmospheres end temperature equal to 8684°K., A

sketch of Figure 31 is shown here. The data for resl air were obtained from
References 43 and 44.

Thus, according to the oriteria (i) and (i1), a real gas at high temperature will
be a better propellant than an ideal gna_at the same temperature and pressure in both
the chambered mnd constant diameter guns .

It is to be remarked, however, that a simplification in calculation is possible in
the case of a gun in which the propellant is ralsed in temperature by a glven amount
of energy (or, for example, by being compressed by & moving piston of given kinetic

* It wmay be that during expansion of the propellant gas, some of the modes are not in
equilibrium and lag the translational mode; then, as a first approximation, the “n” and “&
would Le adjusted to reflect this condition. BSuch lags would tend to increase & and
decresse n , producing better propellant performance.
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energy as in a two-stage gun) if only moderate amounts of dissociation occur. In this
case, experience has shown that the calculated results with the assumption that the
propellant gas is ideal are very nearly the same as obtained by teking into account
the effects of high temperature on the gas hehavior. This is true beceause, for a
given energy input, the ideal gas would rise to a higher temperature than the
vibrating, dissociating, ionizing real gas;, lience, the higher temperature ideal gas
would tend to hehave as the lower temperature, lower 7 , more particle, real gas.

. An example comparing the performance of a dissociating propellant gas to that of the
propellant gas 1f undissociated is given in Appendix II of Raference 28.

1.0
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(a p ) real 0.8} (apP) ideal
a reaq
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0.5 /
T 0.4 p real
P real 0.3 AIR P ideal
P ideal 0,2} Po = 100 atm
0.1 To = 8684 °K
0 1 ! 1. i ] 1 l ] L |
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P atm —»

Section 61

Introductory Remarks Concerning
a Dense Propellant Gas

If the density of the propellant gas in a gun is sufficiently high, the gas
molecules will be close enough to each other so that the intermolecular forces
between them will influence their beshevior. Under these circumstances the ideal
equation of state does not describe the gas, and there is & possibility that the
behavior of the propellant gas upon expansion will be substantially different from
that of an ideel gas. If the gas is highly oompressed, the intermolscular forces
which exist are predominantly repulsive in nature and tend to push the molecules
further apart; 1f the gas is allowed to expand to a less dense state, the forces
between the molecules become predominately auttractive in nature and tend to pull the
molecules closer togethar. 1If the gas 1s still further expanded, the intermolecular
forces become negligibly small, and the gas behavior may be desoribed by the equations
for an ideal gas,

T T —

S
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it ovems reusonable to suppose that repulsive forces between molecules would tend
to accelerate the gas flow compared to a gas with no intermolecular forces (that is,
compared to an ideal. gas), and that attractive forces would tend to retard the gas
flow. Thus, by this supposition, & highly compressed dense propellant gas upon
expanding would flow more rapidly than an ideal gas until it reached the region where
its density was low enough so that the attractive field predominated; then, the gas
would expand at a slower rate than an ideanl gas until its density was sufficiently

low so that the intermolecular forces would be negligible; thereafter, it would
expand as an ideal gas.

This simple picture of the effects of intermolecular forces on the expansion of the
driver gas does not, however, take into account two important factors. One iBs the
difference in nature between repulsive forces and attractive forces; the repulsive
forces between molecules are ‘‘short range” forces and act only over short distances
relative to the longer range attractive forces which exert influence over relatively
much longer distances. Thus, the influence of repulsive forces on the expansion may
well be different in megnitude than that of the attractive forces. The second
factor not taken into account by the simple plcture above is the relation between
intermolecular forces and the geometry of the gun, In a non-uniform cross-section
gun the driver gas expands from & chamber to & smaller tube; during the expansion the
flow is basiocally steady in the transition section between chamber and tube and
unsteaty elsewhere. It is diffioult to ascertain the effects of the intermolecular

forces on the combined steady and unsteady flow which results from the non-uniformity
of the shooktube.

It is the purpose of the following seotions to discuss the effeots of this type of
noi~ideality due to high density on the behavior of the expanding propellant gas,

The expanasion in both the constant diameter gun and the chambered gun will be
examined.

Section 62

The Moderately Dense Propellant Gas
in an X, =, PP Gun

(a) The van der Waals Gas -~ A model for o Moderately Dense Gas

The van der Waals equation of state will be used to approximate a real gas at
moderate density. This equation 1is

~ 1
(p + 62 <E_ ) = RT . (62-1)

The terms abz and b are corrections to the ideal equations of state which account
for the attractive and repulsive forces hetween molecules, respectively. If it is

assumed that Cy ot zero premssure is a constant (C, = oonstant), then the isentrope
nay be derived from Equation (62-1) as

~ 1 4
(p + a0®) (-'-b) = K
Po.




136
where K 1is a function of entropy only, and < is defined as (Cv o T R)/Cv ©
Since the values of abQ/p wnd be are small relative to one at moderate

densities, the expressions for o and ab as functions of p may be simplified
to yleld

a2l 2-7]| ¥
2 Y 1 Y
P a(y = 1)p D
ap = f=2 (L 1+—Z—T°1+-— (62-2)
RT, \P, . Y(RT ) P,
L L 27
Y Y P 4
P\ p bp, /P ap p
o= (=) =21 -=2 (=) =25 ((r- D+ (— (62-3)
p,/ RT, RT, \Pyg Y(RT ) Py

Ep the derivation of these equations, terms containing the square of the terms
ap’/p and bo and higher (or their product) were dropped as heing small relative to
these terms themselves,

The effeots of the intermolecular forces are evident from the equations for ap
and o . It is seen that in the expression for apo there are no repulsive terms
present (i.e., there are no terms containing b), but attractive force terms
(involving o) are present . These attractive terms increuse uo from the ideal
velue, and therefore act to retard the expansion rate relative to an ideal gas
(according to oriterion (1)) as expeoted. Since the ropulsive field exerts no
influence, it is seen to be ineffeotive in improving gun performance in a constant
diameter gun,

From an examination of the expression for o, it is seen that the density as a
function of p for a given initial pressure and temperature is altered from that
of the ideal gas by both the attractive force term (conteining &) and repulsive
foroe term (containing b). The attractive force term inoreases the density o, and
thus the expansion is retarded relative to an ideal gas according to oriterion (i));
the repulsive force term decreases the density o0 , and thus the expansion is
socelerated relative to an ideal gas., It is further seen from the equation for
density that when the initial density (approximately po/RTo) is inoreased, the
density o 18 deoremsed. Thus, the effeot of the repulsive forces becomes greater
than that of the attractive forces with increasing initial density.

It is apparent that the dominating effect for the chambered gun (repulsive or
attractive) would depend on the relative magnitudes of the constunts “o and “b" and
the initial density o, . For a gas such as helium (and to a lesser extent hydrogen)
the attractive fleld is weak relative to the repulsive field, and the b term would

* If second-order terms are taken into account, repulsive terma (with b) do appear in the
expression for ac for the van der Weals gas; thus, In the case of extreme densitles, there
would be an effect of the repulsive fleld on the expansion in & uniform tube (as shown by
Dawson and Slawsky'%),
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dominate. Other gases, such as nitrogen or carbon disulfide, have a relatively
strong attractive field. The van der Waals constants which are indicative of the ‘
relative Etrength of the repulsive and attractive fields are given in the tahle for a |
few gases

Prapellant Gas % atm (liters/mole)? b (liters/mole) 1
Helium 0,034 0. 024
Hydrogen 0,24 0,010 to 0,027
Nitrogen 1.39 0. 039
Carbon disulfide 11.62 0.077

It may be concluded from the above discussion that at moderate density the effects
of molecular forces on the expansion in & uniform cross-sectional area tube is to

retard the expansion. In the transition section the effects of the attractive and 1
repulsive forces tend to cancel each other; the gas flow may be retarded or , )
accelerated by these forces; which effect dominates depends on the relative ) ' {

magnitudes of the van der Waals constants and the demsity; the higher the density,
the mote the repulsive field dominates,

(b) The Moderately Dense Real Propellant Gas in an

¥, =, PP Gun

The above conclusions may be verified by exeamining pressure-velocity (p-u) ourves
for real (actual) gases in guns, Theso curves are calculated using Equations (59-1)
through (69-4) with the gas tabular isentropic data fitted to a semi-empirical equation,
as explained in Section 66. The p-u curve for nitrogen at moderaete density
(po = 340 atm, T, = 25°C) expanding in e gun is shown in Figure 32. It is noted that,
for D,/D, =1, the real nitrogen curve falls below that of the ideal nitrogen,

This is in accord with our qualitative result., For a diameter ratio of infinity
(infinite chambrage) the curves are very nearly coincident, indicating the ocancelling
effects of the repulsive and attractive fields - again in accord with our qualitative
ponolusions. (The tendenoy for lower p at a given u 1in the lower reglon of
pressure 18 due to the fact that the gas state epproaches the strongly attractive
two-phase region).

It would seem from the above discussion that at a higher density the effect of the
repulsive field may more than cancel that of the attractive field in an expansion in
B chambered gun. This is seen in Flgure 33 to be the case with nitrogen at an initial
pressure of 1,000 atmospheres and an initial temperature of 25°C, Here is seen the
remarkable results that the p-u curve for the real nitrogen falls below that of the
ideal gas for the constant diameter shocktube and is above that of the ideal gas for
the infinite diameter ratio case,

* The relative atrength of the repulsive and attract.ve fields may also be seen from an examina-
tion of the furce constants o and €/k which ooocur in the Leonard-Jones equation of state.
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That this result agrees with criteria (i) and (ii) is seen from Figure 34, where ep
and p are plotted as functions of p for this case. It is seen from this figure
that the real nitrogen should expand more rapidly than the ideal in the transition
section (since (p)real/(p) ideal <1 and less rapidly In the constant area section
(where (pa)reul/(pa) ideal > 1

The effects of diameter ratios other than one and infinity have also been
inveastigated. From calculated results it is concluded that the DO/D1 =5 curve is
practically the same as the DO/D1 = o curve, and that a diameter ratio curve somewhat
less than the D(,/D1 = 2 curve (say, DO/D1 = 1.5) would lie midway between the one and
infinity curves.

Do/D1 =
T o/P1= e REAL N,
o Py = 1000 ATM
P To = 25°C
DO/D1=I.5
Do/Dy = 1
/D1 — P

(These conclusions are true for ideal gases, and, as will be seen below, are
approximately true for real gases except at extremely high density).

Section 63

The Highly Dense Propellant Gas in an
Xg =®, PP Gun

(a) The Abel-Noble Gas ~ A Model for a Highly Dense Gas

In the very dense gas the molecules are so close together that the repulsive field
is extremely large relative to the attractive field. To describe approximately the
behavior of such & dense gas, the attractive term (3;07') in the van der Waals equation
is neglected and the equation
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/1
p<_ ~b) = BRI (63-1)
p

is often used. The terms ‘““Abel-Noble”, ‘‘Abel”, or “covolume” are used for this
equation or for the gas that the equation describes.

Prom Equation (63-1) and the thermodynamic relation

o 2
_ T /%
G = G m.T+j‘ ;‘:‘(’é;i)p de (63-2)
0

where C‘r o, T is C,- are zero pressure and temperature T , it is found that
Cc = 0, ®, T (63-3)

.tqr the Abel-Noble gas. Then from the Gibbs Law equation expressed as

et RN
L)

ol ¢ 1 [/ '
ds =-1dT+—-(-—>d 63-4
7 7 ) ¥ (63-4)

and the assumption that c, @, 1 is constant, the isentrope for the Abel-Noble gas

is obtained as
1 4
b (- } b) =K (63-5)
P

where K 1s & function only of entropny. This isentroplc equation (63-5) is especlally
useful in interior ballistics calculations and is very convenlent to use, (In
Section 66 a similar equation applicable to actual propellants is discussed).

The expressions for ao and 0 as e funotion of p may be obtained from
Equations (63-1) and (63-5) as ’

-zt
2 ¥
ap = m<l> (63.6)
RTo \p,
(o 1 -1
Y
RT
p = <1°-> — b : (83-7)
P/ by

By comparing Equation (83-68) for ap with the corresponding expression for an ideal

ges (Equation (58-3)), it 1s seen that the tw» expressions are identical. The pressure-
velocity history during an expansion of on ideal gas and that of an Abel-Noble gas

from the same initial temperature and pressure in a constant dicmeter tube are there-
fore identical; from this point of view there is no effect of the repulsive field on

the expansion in a constant diameter gum.
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This result is as expected from the previous result with the van der Waals equation at
moderate density. (However, in the case of extremely high density there probably
would be some effect of the repulsive fleld, as evidenced by the theoretical work of

* Reference 45), Thus, repulsive forces ere again seen to be inefficient in improving

driver gas performance in a constant diameter section.

In the case of an ideal propellant gas, the initial sound speed a, was found to
be a criterion for the merit of the gas. The sound speed of an Abel gas is much
above that of an ideal gas at the same temperature and pressure.

r-1 L
2y Y
p b
a = HRT, |=| |+ =
Pg Vo= b AR

e
0
Yo ~ 0

b ‘ b
R, 14— | = HRT, 1 + 20|
b RT
Yet, as shown above, the ideal propellant gas and the Abel propellant gas at the same
initial temperature and pressure would produce the same consiant diameter gun
performance, Hence, the acoustic velocity is not an indicator of the merit of a real
propellant gas a8 in the case of an ideal propellant gas .

The Abel-Noble expression for o 1s different from that of the ideal gas Equation
(58-4) by the presence of the covolume term b which deoreases it as a function of p
for given initial p, and T, . Therefore, in an expansion (from a given pressure
and temperature) in a transition sectton, a highly dense real gas will expand more
rapidly than en ideal gas!. Thus, the repulsive field is again seen to be efficient
in improving gun performance in the transition section.

* However, it should be noted that initial temperature still retaina a dominant role for the
Abel gas in an x, = o , pp chambered or unchambered gun. This is seen from an examination
of Equations (63-7) and (63-6); from these equations it is evident that a higher initial T,
ylelds a higher projectile velocity for a given b and Pg

t Another way to understand the gain in veloocity in & covolume gas in a steady expansion is to
note that the enthalpy has an additional term, pb , which the ideal grs does not; thus

h= Co m.T.T + pb + RT for the covolume ges.

w-——-—..___i
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Thega remarbka ars horne ont in Pisure 38 whore the T U SUTVES ar'c snown £01 a
v =17/5 gas with and without covolume; the diameter ratio one case (no chambrage
case) and the diameter ratio infinity (infinite chambrage case) are illustrated. A

covolume parameter b/(vo ~ b) equal to 100 is used for this curva'.

b _
Voob = 0,100 L

ﬁﬂoo —'¥|

p(V-b)]'4=p°(v°-b

)1.4

D/ D] = 00—
Dg/D1=1 = — —

u—-o>»

It is seen that, for the constant diameter gun, the p-u ourve of the 1deal'gas
(1.e., the gas with b/(v° - b) = 0) is coincident with that of the covolume gas
(b/(vo - b) = 100), However, for the infinite chambrage case the effect of covolume
is seen to increase the préssure for & given velocity by & huge amount.

(It 18 to be remarked that the velocity in these and other curves for the Abel-Noble
gas 18 made dimensibnless by dividing by a parameter which has a-factor Vypo(vo - bh) .
Thia factor would equally well be expressed as \47§T° by use of the thermal equation,
Equation (63-1), Thus, a given dimensionless velocity indiocates a given velocity for
a given initial temperature. The reason the faotor Vypo(vo - b) 18 used is to
emphasize the fact that the p-u ourve is derived only from the isentropic egquation,
Equation (63-5); thus, when real gas data are fitted to an isentropic equation similar
to the Abel-Noble equation, the p-u ourve for it msy be calculated without regerd
to the thermal equation of state and the velocity made dimensionless in a like manner).

The effects of a value of the ovovolume parameter equal to B.00 for the <y =17/b
gas 18 seen in Figure 38 where p-u plots are shown, Here again the repulsive forces
(which are acoounted for by the covolume) are seen not to affect the uniform diameter
expansion, but do increase the pressure for a given velocity (or inocrease the velocity
for a given pressure) in the chambrage cases,

It has been ohserved from other calculated results that the diameter ratio curve
which is midway between the D /D, =1 and D,/D, = ocurves is 2 for the
b/(v, - b) = 8,09 (very dense) gas and 3 for the b/{v, - b) =100 (extremely dense)
gas oase, .

* This dimensionless parameter is the ratio of volume cocupied by gas moleoculos to the volume
not oocupied by gas moleoules - the larger this ratio is, the larger is the covolume. This
parameter occurs oconvenlently in the equations of an Abel gas. A value of this parameter
equal to 100 is an extremely large value; a value equal to about 10 is what nitrogen or
hydrogen gas at a pressure of around 10,000 atmospheres and room temperature would possess as
seen from Bridgman’ s data’S, \
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The escape gelocity (the velocity that the propellant ges attains when iﬁ expands
into a vacuum) 1is seen from Figure 37 to be increased by the repulsive forQes in the
cases with chambrage. Tn this figure the dimensionless escape velocity is plotted as
a function of the parameter b/v0 (the covolume divided by the total volume). For the
no-chambrage case (D0/01 = 1) the escape velocity is unaffected by the repulsive

forces -~ it is the same as for an ideal gas; however, for chambered guns the enormous
influence of these forces is evident in the figure.
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In fact, for large b/vO the escape velocity may be shown to be equal to the product
of the urea ratio and the escape velocity of a covolume gas in a gun with no chambrage;
viz.,

D,\’ 2 A 2
u = [=2) ¥ = b) m—— = =2 VHRT 63-8
ese <n> oV y=1 A e T (63-8)

1

and beoomes infinite for infinite chambrage.

(b) The Highly Dense Real Gas
The same effects of the intermolecular forces as appeared in the Abel-Noble gas are

evident in real (actual) gmses at very high densities, Figures 38 and 39 show & comparison

between real nitrogen and ideal nitrogen. In Figure 38 the pressure-velocity curves are
compared for an initial condition of nitrogen at & pressure of 3,000 atmospheres and
temperature of 25°C., For the no-chambrage case (DO/D1 = 1) the ideal and real ourves
are very close together'. For the infinite chambrage case, the real gas curve as for
the Abel gas model is much above that of the ideal curve and demonstrates the expected
increase due to the repulsive forces.

* The escape velocity is evaluated from the equation
2 y 1 D}
p P
Ugpo * f ® dp/an| + f S dp/p +f L dp/an
Py »} p=0
with the condition that the flow is sonic at the barrel entrance, i.e.,
- [ ] _ [ ]
uy Wy = oy

t Bince in the lower region of pressure the influence of the two-phase region is felt, the
attractive forces predominate and cause the real ges curve to fall below the ideal gas curve,

e el
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Like effects are evident in Fionra 20 whare ideal and real nitromen nre somnarad
at a higher initial pressure, 6,000 atmospheres, at 25°C. Here the repulsive effect is

seen in the no-chambrage case as well as in the infinite chambrage case where it is
most striking.

T

D./Dy =00 Nitrogen
/Py ,

Idealfdz
= = ——Real Ny

Py = 6000 atm
T, = 25°C
u——>

Similar evidence of the real gas effects on the expansion in guns is shown in
Figure 40 where p-u ourves for ideal and real hydrogen are compared at initial
conditions of 'p, = 2190 atmospheres, T, = 150°C, The repulsive effect is apparent.

The effect of chamber diameter on the dense real gas has been calculated. It has
been found that the DO/D1 = 5 case 1s almost the same as the D,/D, =® case, and
that a D,/D, equal to slightly less than 2 (about 1%) is halfway between the 1 and
™ cases,

Section 84

Summarizing Remarks on Dense Propellant
Games in an x, =, PP Gun

It has been demonstrated that the behavior of a dense propellant gas in an X 5@,
PP gun may be considerably different from that of mn ideal gas. This difference is
due to the existence of attractive and repulsive forces which act hetween the gas
molecules. The attractive forces tend to decelerate the expansion rate relative to
an ideal gas and thus adversely affect gun performance; the repulsive forces tend to
acoelerate the expansion rate relative to an ideal gas and thus improve gun performance,

At very low gas densities the intermolecular forces which exist are negligible; at
higher densities the forces ares predominately attractive. At still higher densities
the repulsive forces predominave. The effectiveness, however, of these forces on gun
performance depends oy’ the geometry of the gun. It is found that the attractive
forces are much more effective relative to the repulsive forces during an expansion
in a uniform cross-sectional area gun; whereas, both types of forces, attractive and
repulsive, are effective when expanding in a non-uniform gun. It {8 to be noted that
acoustic velacity is not a measure of the merit of e real propellant gas as it is for
an ideal propellant gas. Qualitatively low ao (acoustio impedance) as & function
of pressure for the isentrope 18 desirable for good propellant performance in a
oconstant diameter gun; for a chambered gun, low po (density) as a funotion of
pressure for the isentrope is desired..
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The effects of the

propellant gas density on gun performance are summarized in

the table.
Relative Magnitude xo'= ®, PP Gun Performance
Propellant of Attractive and of Rea}dGa; gelattve to
Gas Repulsive eal Las
Density Intermolecular D/D, = 1
Forces Ungfo;m Gun Chambered Gun
Low Both negligible Same Same
Moderate Attractive Much worse Somewhat worse,
predomingtea or same, or
somewhat better
Moderately high Both of same Worse Better
order
Very high Repulsive Same or Much better
predominates somewhat
better
L

It is remarkable that at moderately high density the performance of a real gas may be
worse than that of an ideal gas in a uniform diameter gun, but better in a chambered
gun (as seen in Figure 33), Thus, the gun in this region of density becomes &
discriminator betwsen the attractive and repulsive intermolecular forces. At very
high densities, the performance of a real gas is sbout the same es that of an ideal
gas in a uniform gun, but is much better in a chambered gun. This result agrees with
that obtained from the Abel-Noble eguation of state to approximate the behavior of a
very dense real gas.

To desoribs acourately real gas behavior a semi-empirical entroplec equation (similar
to the Abel-Noble equation) has been fitted to tabular data with success (see Section 66).
From the isentrope the velocity (and thus the performance) of a driver is evaluated from
the f(dp/ao). for the expansion in a uniform gun, and j(dp/p)‘ for the nohuniform
gun. \

Section 68

Expansion of a Real Propellant Gas in a PP Gun
With Finite Length Chamber

It is reasonable to assume that the effect on gun performance of the gas non-
idealities when the chamber length x, is not infinite is qualitatively the same as
when x, 1is infinite. Each such finite x, case requires a calculation involving
all the Equations (59-1) through (68-5).
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An interesting result may be obtained for the ewpancion of an Absl zas iu Lhe
preburned propellant gun for which «x

o 18 finite and D,/D, 18 equal to one. This
is then the classical Lagrange ballistics problem with a propellant whose isentropic
equation of state is

p(iv - b)Y = K (65-1)

and whose thermal equation is
p(v - b) = RT . (85-2)

It is demonstrated in Appendix I that for a given propellant gas mass to projectile
mass (G/M), a given ratio of specific heats 7, and the same initial pressure and

temperatures, the projectile behavior for the Abel gas is precisely the same as
that for the ideal gas in a D,/D, =1 gun,

Thus, in general, for constant diameter guns (DQ/D1 = 1), dense real gases will
yield the same performance as ideal gases at the same Py and T, if the mass uf gass
G is the smme; however, for a given DD/D1 =1 gun of fixed finite volums, the dense

real gas will yield poorer performance, since the mass of real gas in that case is lesg
than the mass of the ideal propellant 888,

N REAL GAS V>
\

idea| u,. (Real)
SAME INITIAL p,, T, | “p (1decl) > vy

[ ¢ IDEAL GAS e

Another way to rationalize in this instance is to think in terms of the sound apeed;
the sound speed in the resl gas is larger than in the ideal gas.  Consequently, the

bressure lowering rarefactions are reflected more quiokly to the projectile in the
case of the real gas,

For x, < ® chambered guns, dense real propellant gases will yleld better
performance thaen ideal propellant gases at the same p, and T, 1f the mass of gas
G is the same; this is true for the reasons disoussed above, that is, the greater
Jdp/p  for the real gas. However, for a chambered gun having a fixed finite volume,
the real gas propellant may or may not be superior to the idesl gas propellant,

depending on whether the real gas Jdo/p advantage is greater or not than the real
gas small G disadvantage.

L.

REAL GAS P —

|
FASTER GUN = 7

IDEAL GAS P>

I—
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In this instance a calculation 18 required to determine the better propelliant.

For the constant base pressure two-stage guns the required volumes of the gun may
be considerably smaller for the real gas than for the ideal gas to obtain the same
performance (see the discussion in Section 57).

Section 66

The Use of a Semi-Empirical Entropic Equation
To Approximate Actual Propellant Gas Behavior

In genernl, the gas thermodynamic properties are given in tabular form; in this '
situation the fundamental equations of Section 59 may be solved numerically. This is
a long and tedious process. It has heen found by Seigels'“7 that the isentropic data
of dense real gases at temperatyres between 150°C and -150°C and pressures up to
6,000 atmospheres may be fitted accurately by a semi-empirical entropic equation of
the form '

p(ﬁ-ﬂ)/ﬂ (v-1) = « : (66-1) ‘

where B, f, and x are functions only of entropy. This equation hes been fitted

to nitrogen, argon, and hydrogen data at temperatures below 160°C (Reference 41), This
equation is similar to the Noble-Abel (ocovolume) equation of state used for many years
by ballisticians to desoribe propellant powder gas.

p!/Y (v = b) = constant . (66-2)

The semi-empirical Equetion (66-1) may be fitted to real gas data with much greater
mcouracy than the Abel equation because of the fact that the parameters B, 1, ad «
may vary with entropy.

Evidence to date indioates that this equation may also be applied to propellaut
gacer at high temperature as well as high demsity, Bjork“? was able to fit nigh
temperature hydrogen gas data to the more restrictive equetion

pi/m (v) = K! (66-3)
where n , and K' are functions of entropy. His fit covered the region of
hydrogen data from 100, 000 1b/in? and 12,000°%€ and below. (However, the effect of

molecular attraction +was not uccounted for in the data.)

An advantege of the semi-empirical equation is that it may be conveniently applied
to the preburned propellant gun. Thus, from

pA-D/B (v -ty = «
the Riemann function < may be evaluated as

ofo, = (p/no)‘/ﬁ . (66-4)

0




s

147

The characteristic equations which apply to the constant diameter chamhear and harral
are, as before,

° 3
—uto)+(uta)—(uzto) = 0 (66 -5)
% = ¢
The sound speed a may be expressed as
I AL T (68-6)
L-2 T,
where F 1is defined as
f
F = (66-7)
v, - f

The quasi-steady energy and continuity equations relating the transition section exit
and entrance become

2 2 ~B-2 -2
ul +ﬁa_°2 1 +-EF'<%2> H +[T-L 1 +-B-F‘<-—-L (66-8)
0

%o

B-2 B2
U, |1 + > = uAg b+ —<—> (88-9)
o

These equations may be applied to the preburned propellant gun and solved
numerically by hand or machine. In such a caloulation it is usually convenient to
meke the equations dimensionless by dividing o, u, and a by o, , and dividing
p by p, It is interesting to note Appendix I, where it is shown that for the case
of a constant dlameter gun (D /D1 = 1), the above equations when expressed in
Lagrangian coordinates become equivalent to those of an ideal gas.

If the gas described by the semi-empirical entropic equation is shooked, it is
necessary to use an expression for the internal energy v (or the enthalpy). From
the thermodynamic identity

2 = (66-10)
v =P )
8
and Equation (86-1) is obtained
v = g+ Hp(v-0(B~-2) (86-11)

where g is a funotion only of entropy.

One need at the present time is for tabular data foé'proueliant guases such as helium
and hydrogen whlch include the non-idealities due to temperature and density. (Some
hydrogen data will soon be available from the National Bureau ot Standards,
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Washington, DC. according to Dr. H.Wooley.) These data are reauired. for examole. in

| order to design a constant base pressure, two-stage gun, in such a design, as discussed
in Section 57, the effects of the non-idealities are extremely significant in determining

} the size of the gun. Toward this end the available hydrogen data of Wooley®® has been

| extended to higher density and the results fitted in Reference 100 to Seigel's Equations
(86-1) and (66-11). A plot of the fitted constants is given in Figure 45, Until more
reliable data are calculated, it is recommended that the information in Figure 45 be
used to approximate the behavior of hydrogen,

} : Section 67

Remarks on Expansion of Liquids and Solids
The criteria of driver gas performance applied above to gases may be equally well
applied to liquids or solids; such substances under huge pressures behave like very !
_dense non-ideal gases and expand in a ‘“propellant gas' fashion. It is to be expected :
that extremely large repulsive forces would exist within the liquid or solid when in
this highly compressed dense state. Therefore, the expansion even in & constant
diameter tube of a liquid or solid would be more rapid than such an expansion of an '
I idealized like substance, and the expansion in a chambered gun would be a-great deal
more rapid than that of the ideal substance,

i These views are borns out by a p-u plot of the expansion of high density water :
(T, = 26°C, and py = 100,000 atmospheres) in & gun. The plot, seen in Figure 41, ’
shows the pressure-velooity relation for water expanding in a gun ae an ideal gas
(no intermolecular forces) and as real water,

100,000 IDEAL GAS WATER — — — —
WATERLIKE SUBSTANCE 1
o _
atmospheres po = 100,000 1
‘ atm
To--- 25°C
meters
0 ' L Vsec

0 2,000 4,000

The effects of the repulsive forces arc manifest and are, as expected, much larger
- for the chambered than the uniform gun.

It 18 to be remarked that the isentroplc behavior of solids and liquids has
often been approximated by the Murghnahan equatioun of state

n
A\
p+A = <__°> A (87-1)
v
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where 8 and n are empirically Fitted voustanis®™. This 1S B very convenient
] equetion to use, since the expressions for the thermodynamic quantities are similar
‘ to an ideal gas; thus

n(p 4+ A
a2 = (p )

(87-2)
o
\.. 2 -
: o = B (87-3)
} n-13
| o’
h = ‘ (67-4)
i n-1

where o and h are taken to be zero at a = 0 . To make Equation (67-1) more
flexible, the parameters A and n could be functions of entropy.

Finally, an isentropic equation of state could be written which would desoribe the
[ behavior of any substance, gas, liquid, or solid:

(p+ ANV =B = ¢

where A, B, ¢, and n are functions of entropy.

» * This equation wae used to obtein Figure 41,

s
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PART XII. REMARKS CONCERNING PROJECTILE
VYELOCITIES - PRESENT AND FUTURE

Section 68
The Selection of a Propellant
It i8 not always obvious which propellant is best to use. For example, a preburned

propellant gun having relatively small chamber volume may perform better with air than
hydrogen &8 B propellant.

‘ | 2500 FT/SEC
AR ————p

- J

1 2000 FT/SEC
HYDROGEN @ —_—

I

(This results from the fact that the larger G/M of air, weight of propellant to
projectile, being much greater than for the hydrogen, may offset the disadvantage of
alr's low sound speed relative to hydrogen's. The calculation for a given case may

be performed using Figures 20 and 21, Of course, for relatively large chamber volumes
hydrogen becomes far snperior.)

If high velocity is desired (say, about 15,000 ft/sec) the choice of propellants
is restricted to either heated hydrogen or heated helium, This results from the fact,
as has been pointed out, that the achievable velooity in a gun is practically limited
to velocities corresponding to a 'yu,/a, equal to about 2,5 to 3 (or about 30 to 40%

of the escape velocity). Moreover, to achieve the required a, . & two-stage gun is
necessaly.

As between hydrogen and helium, hydrogen gives, in general, higher projectile
velocities relative to helium; its temperature is lower; this results in less heat
loss and less erosion.

One must, however, exercise caution in the use of hydrogen. It is explosive when
reacted with the oxygen in air. In addition, hydrogen embrittles many steels when it
is contained at pressures above 500 atmospheres; at these pressures materials (like
certain stainless steela) fiot subject to hydrogen embrittlement should be used. In
the case of a two-stage gun the embrittlement problem usually does not occur since the
initial loading pressures are low and the peak pressures are only held for milliseconds.
If hydrogen is to be heated and maintained at high temperature, one must ascertain
that the containing vessel 1s not attacked by the hydrogen (“hydrogen attack’).
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Section 69
Proposed Schemes to Increase Projectile Velacitiies

There have been a number of schemes attempted in order to increase the projectile

velocities in guns. (See, for example, the survey made hy Knapp'®®.) A few will
be listed below:

(8) The Traveling Charge Gun or Rocket Projectile

In this scheme the projectile is propelled in part or entirely as a rocket. (See,

for example, References 67 and 68.) It carries a propellant attached to its back end
which burns during its travel in the barrel.

BURNING PROPELLANT

'//’/,'// e \

Up to date this scheme has not prbduced significant velocity increases duec to the

- ‘diffioulty of burning the propellant rapidly enough.

(b) The Addition of Energy Along the Barrel

At successive locations along the barrel energy (electrical or chemical) is put

into the barrel immediately after the passage of the projectile. (See, for example,
References 69, 104 and 111.)

QL

>

BARREL

This scheme has not been successful to date.

(c) The Varying of Barrel and Projectile Geometry to Augment the Velocity

The use of tapered gun barrels, either sudden or gradual, has been considered with
various arrangements of projectile and projectile-sabot geometry.

Howell, using the scheme sketched on the following page (right), reporta achieving
a velocity of 34,000 ft/sec consistently with a 0.02 gm sphere.

.
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(d) Use of Electromagnetic and Electrostatic Concepts to
Increase the Projectile Velocity

various schemes to accelerate projectiles by electromagnetic and electrostatic
devices have been proposed and tried for at least the past fifteen years. (See, for
example, References 65, 66, and 109.) These include attempts to directly acocelerate
the projectile electromagnetically, and also to indirectly accelerate the projectile
by accelerating the ionized propellant gas. To the present time the use of electro-
magnetic concepts does not offer much promise of producing velocities above 15,000 ft/sec
for heavy projectiles. However, for small masses (less than 0,Q1 gm) these types of
accelerators have achleved velocities’? up to 50,000 ft/sec and give promise of higher
velocities.

(e) Heating the Gas in the Pump Tubc of a Two-Stage Gun

Calculation indicates a velocity gain 1f the helium or hydrogen gas in the pump
tube of a two-stage gun is initially heated, or heated during the compression stroke
(see, for example, References 48, 63, 84, 82, and 85). Results to date by Arnold
Engineering Development Center indicate that gains of 2000 - 3000 ft/sec have been
achieved in this manner at a projectile veloocity of 30,000 ft/sec; however, Cable'®®,
reports no gain by heating.

In summary, the various proposed schemes (a) through (e) may prove to be useful
in conjunotion with a two-stage light gas gun to augment projectile velocity. None
of the schemes, it is felt, will inorease the projectile velocity by more than 15%.

One must not overlook the possible use of shaped chargo or explosive concepts.
Buch concepts have resulted in the acceleration of :null projectiles to very high
velocities (up to BO,000 ft/sec). (See, for exemp’ - #<iwrences 73 through 75,
Reference 84, and Reference 109.) These concenss ak - i ing advanced with two
promising new schemes: the “implosion driven” lammsh:v i Glass’® and the “gas
injeotor’* of Godfrey’’. (See also Reference 71.) Ir rupiication of all of these
concepts the projectiles must be rugged to withsiewc :he high pressures which occur.
A discussion of strength limitations on projectii«s is given by Curtis®®®.
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Section 70

Presently Obtained Maximum Projectile Velocities

The maximum velocities obtained experimentally from light gas guns are shown in
Flgure 48; this figure vpdates the information contained in & plot by Lukasiewicz®®,
The figure is shown in the following sketch.

1000 M T TR T T T T T T T T 1
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AMES® \ 3
NRL ¥ ]
} RARDE. | 3
GM.Q\ E
AMES! -
HOWELL® ]
ol Ll iy I

0 10 20 30 40
MAXIMUM PROJECTILE VELOCITY

FT/SEC X 1073

A listing of some of the veloclty data used for Figure 46 with the pertinent gun
characteristics is given in Table I.

It is seen that the highest velocities are obtained for the smallest mass
projectiles, Thus, Charters’® has reported a velocity of 32,800 ft/sec for a
0.07 gm oylindrical model. A sketch of the two-stage gun used by Charters is shown
on page 155.

Howall has reported*®® consistent 34,000 tt/sec velocities with 0,02 gu
projectiles using a two-stage gun with an amugmenter technique®’., NASA (Ames) has
achieved a velooity of 37,060 ft/sec with a 0.040 gm projectile*®.  The
performance of the NASA (Ames) light gas guns 18 shown in Figure 47.




Maximum Projoctile Velocities

TABLE I

Projectile In-Gun B
o arrel Pump Tune
Organization . quzl;e Pro;e.cttle Diameter Diameter
g

Velocity Weight , .

(ft/sec) (gn) (in) (in)
Arnold 25, 600 0.27 0.30 1.5
Engineering 24, 800 0.41 0.30 1.5
Development 26,1700 1.0 0.5 1.58
Center (AEDC), 29, 900 1.12 0.5 1.58
Tenneasee 26, 100 1.5 0.5 1,58
Royal Armament 30, 100 0.08 0,28 1
Research and 27, 800 0.108 0,23 1
Development, 28, 400 0.145 0.25 1
Establishment 27, 000 0.2 0.25 1
(RARDE), Kent 26, 200 0,24 0.25 1
England
US Naval 26,900 1.3 0. 50 2
Ordnance 22, 000 30 1.6 )
Laboratory (NOL), 18, 000 m 1.8 5
White Oak, 17,800 141 2 8
Silver Spring, 15, 200 2656 2 5
Maryland 10,600 1170 4 5
Canadian Armament 25, 000 0.20 0.25 1.68
Research and 16, 000 8-14 0.78 2.28
Development 17,600 B5-75 1.5 4
Establishment 15, 900 850-1000 4 10
(CARDE),
Quebec, Canada
US Naval 31,200 0.5635 0.3 1. 14
Rescarch 28,800 10 0.83 3.28
Laboratory (NRL), 24, 500 13, 54 0.83 3.25
washington, DC 18,200 24.0 0.83 3.25

18,300 253 2.6 8.2

16,400 462 2.5 8.2
NASA 35,800 0,052 0,22 1.1
Ames Research 32,300 0.081 0.22 1.77
Center, 31,600 0.100 0.22 1.25
Moffett Field, 28,800 0.19 0.28 0.78
Californie 30, 500 0.90 0.50 2.13

26,800 6.9 1.00 4.00

37,060 0.040 0.22 1,77
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Obtaining these high velocities with larger projectiles is certainly possible in
’ principle by scaling up the gun system. However, the cost and sizes involved may meke
" such eoaling impractical, (Thus, the gun sketched would be 250 ft long if scaled up by
} a factor of ten to fire a 70 gm 2.2 in projectile at 32,800 ft,sec.)

The plot of data In Figure 46 and in the sketch does not indicate the present lesser
velocity capabilities of propelling fragile projectiles, for example, cones; such
fragile projectiles often must be saboted and designed to be aerodynamically stable,
Charters:®?, has reported the repeated successful launching of cone models at
velooities up to 24,000 ft/sec; these cones had half angles between 6% degrees and 12%
degraes. He also has launched saboted glass spheres at about 297,000 ft/sec,

T.Canning of Ames Research Center (NASA) has launched saboted aluminum spheres at
32,000 ft/sec.

Section 71
Future Possibilities ‘

Although the increase of projectile velocities from guns has been rather
phenomenal in the last 20 years, it is predicted that the inorease will continue and

that projectile velocities in excess of 60,000 ft/sec will be obtained for projectiles
weighing more than 0.1 gm by 1985.

1 ST (2
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100,000 |- _/
- |
10,000} , i ? o
| PROJECTILE | | :
VELOCITY 10001 . | |
b FT/SEC I | | |
| | I
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This increase in velocity will result from the following advances:

(i) Application of the constant base prsssure principle.
(11) Improvement in the design and strength of projectiles and guns.

(111) Perhaps some augmentation by one of the techniques discussed in Section 89.
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APPENDTYX a

Derivation of the Expression for the Time
Rute of Chunge of a Quantity

Let P denote a quantity which depends only on position x and time t . This is
expressed by the equation

P = P(x,t) (A-1)

P 1is called the dependent variable; it depends on the values of x and t , which
are thus called the independent variables. For every value of x and t , Equation
(A-1) states there is a determined, definite value of P . This may be shown by
looking at an x-t plane as in the sketch.

B
. A '
X XA r-——’-Y l
|
I [
| ]
'A ' t—

For point A the x and t values are x, and t p + Corresponding to this point
is a value of P , that is, Pi\ . Similarly\ the x and t values of point B
determine a value of Pa ,

Let it be desired to determine the change in P in going from point 1 to a point
2 very close (differentially close) to point 1.

|
r ]
X Xpr——""1
i | |
| I
L b—
tH I'] + df‘ = t2
The change in P , in going from 1 to 2, will be designated as dP .
& = P, -P, . (A-2)

* This elementary discussion is to be omitted by the reader fumiliar with partial derivatives,
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To obtain the change in P , one may think of starting at point 1 and proceeding to
point 2, noting the change in P during the movement. It matters not which path is
choscn to go from point 1 to 2; tho differcnce dP will always be the same; this is
true because the value of P at each of the points 1 and 2 depends only on the values
of x and t at each of the points 1 and 2 by Equation (A-1). Hence, their difference
dP depends not on the path chosen to go from ome point to the other, only on the end
points,

It 18 convenient to choose a path between points 1 and 2 which is first a constant
x line and then a constant t 1line, as indicated in the sketch.

[ I

X

X] e e = =0 !

t—

t2

The selection of this path allows a simple calculation of the desired dP . For this .
path f
P = dP due to change in t . dP due to change in x ) (A-3)
at oconstant x at constant t
Let the first term on the right of the equation be found by the following procedure.
From & knowledge of P = P(x,t) , one could plot P as a funotion of t for a number
of given x's as sketched.

- —
x

I
x

F -

Let the constant x, 1line which is the path of interest he considered.
X = x]

e — — ——— =

= "-——.
f1 f2 f1+ dt
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¢
The hin line t0 56 saawined i iie differential segment between t =t, and
t =t, . This part of the line, being only of differential length, may be considered
a stralght line of slepe tan & , :

X, =%
R
|
P ; dP due to change in t
. with x = constant = x
P —— | 3 ‘
| | |
l ! b
fl 12

Then from the sketch

dP due to change in ¢
dt

= tan 6 . (A-4)
What is tan & % It is the slope of the x-equal-constant line in the x-t plane, or

dp
tan 8 = :l? at constant x = x,

which is written by convention as a partial derivative,

P
tan & = (;) = EE (A=5)
t/gag, Ot

where, a8 indicated, the subscript on the partial derivative is sometimes omitted.
Equation (A-4) thus becomes

dP due to change in ¢ ap
= (=] dt . (A-8)
at constant x -1 x
Similarly, it will be found by considering the constant t =t, 1line that

dP due to change in x oP
= {=] dx . (A-T)
at constant t 9x t
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The Cipresaion oguuibiun (A-3) for the total cnnnée in P in going from point 1 to
point 2 becomes

dP = —dt +— dx (A-8)
-

where the derivatives are evaluated at point 1 (or, equivalently, at 2 which is
infinitesimally close to 1). Equetion (A-8) follows from, the fact that

P = P(x,t)
and is often written directly in an elsmentary calculus course.

If the rate of change of P with time 1s desired, i.e., dP/dt , the equation
(A-8) becomes after division by dt

dP _ Eg dx oP (D)
dt 3t 'atox

This expression is meaningless unless dx/dt is specified; dx/dt is a direction
or velocity in the x-t plane. Therefore, if one desired the dP/dt in a direction

dx/dt egqual to V (that is, 1f going at a velosity equal to V) the expression for
dp/dt becomes

ap _®, A10)
dt /gy T X

— V

dt

V may specify any desired velocity. For aexample, the rate of change of P with
time when moving in a fluid with a veloocity V = 10 miles per hour is

-~

<dP) op 10 P (A1)
—_— = =+ 10 = . -
dt dx Bt ox

At 10

If one desired the time rate of change in P oexperienced by a gus particle moving
in the flow, the value of dx/dt would be the velocity of the gas particle, u’y, '

Thus,
<dP> P » (A12)
— = — + u S N -
dt x| . ot ox .
dt

Such a time rate of change when going along with a gas particle is thus the rate of
change for a “material’ particle or “substance” and, hence, is often termed the
“materinl” or “subatantial” derivative,
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Walul inl or subsiuniial derivative

dt
3@
= 5; +u 5 . (A-13)

For three dimensions the material derivative becomes

¢ 3, 2 3 3 s
_— T —— — YV — — . -
R UERT'TY: (A-14)

It is nfrinterost to obtain the time f&te of change of P along a disturbance path
which has a velocity equal to the particle speed plus the sound gpeed

& t (A-15)
— = uta . -
dt
Then Equation (A-9) becomes
P oP . (ot oP (A-16)
ot - s T MERR
where .
? ° t a) ° ' A-17)
— o —— -— -
Dt ot f (wea ox ¢

represents the rate of chaqge along a disturbance peath,

\

o ' o
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APPENDIX B
The Derivation of the One-Dimensional

Unsteady Characteristics Eqguations

The gas flow in a constant diameter tube will be examined. Let a layer of gas of
differential length dx be considered. Across this layer the gas thermodynamic
prouperties and gas velocity all change by differential amounts as shown in the sketch.

GAS LAYER I(-—— dx

p+ dp
U—P u+t duv—~—>p time t
p+dp

pdx = mass

time rate of mass increase = DPUX
Dt

These differential amounts are all small changes due to a change in x at a given t ;
thus

dp = (op/ox) dx
du = (Sufx) dx (B-1)
do = (90/3x) dx

and the differential change in products may be similarly expressed

3
d(ou) = —(g;l) dx . (B-2)

The continuity equation applied to this layer is

9p dou dp
pu -,ou+d(pu)+-a-€ = pu+-a—x-dx+:a—t
or
du 30 dp )
—— ~_+——:0 . B-3
pax uax " (B-3)
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The acceleration of the gas layer is

du du N du
— = e u—
at 3t o

where d/dt represents the “material” or “substantial” derivative (see Appendix A).
The momentum equation may thus be written in terms of the acceleration as

" - a2 )
P at = p p p) = D p e b
or
du Ju 1 9p
— Uz & == B-4
ot qu P ox (B-4)

The assumption is now made that the process occurring in the tube is isentropic,
Thus, whereas, in generasl,

P = pl(o,8) (B-5)

this becomes
p = p(p) for s = constant . (B-8)

The sound speed a and Reimann Function ¢ are defined by

)

a? = <—p> (B=7)
90/
a

do = <- dp> (B-8)
'0 B

1
do = (—— dp> . (B-9)
&0 /g

For the constant entropy process assumed here the esquations become

or, from (B-T),

a = —, s constant (B~10)

a 1
do = -dp = —dp , 8 constant . (B-11)
P ap
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Equation (B-11) may ha transrfarmed tn
0 .
d,f.’ = - do (B-12)
a
dp = apdo . (B-13)

Equation (B-12) states that a differentimsl change in o is equal to po/a times a
differential change in o . One may thus write :

90 _ pdo "

9t  adt (B-14)

op p %o

% adx (B-16)
Similar reasoning yields

o = & B-16

x 80 x (B-16)

It is thus seen from these three equations that the gradient in the Riemann Function
¢ may be substituted for gradients in o and p . If this substitution is made in
the continuity equation (B-3) and the momentum equation (B-4), the following set of
equations results:

u du %o

-_a—t..g.u_a—x+g--a—x = 0 (B-17)
o o du -0 B-18
iR (B-18)

By adding and subtracting equations (B-17) and (B-18) the ‘“characteristics equations”
are obtalned.

3 -]

—é-t (u +o0) + (u +a)-a-x- (u+0) = 0 (B-10)
I ° =0 B-20
-'ﬁ(u~l0)+(u-n)'§;(u—aﬁ = (B-20)

with the notation

D ? .
—_— = —-+(uta,)—-; (B-21)
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these equations may he writtan

D
B-t- (wto)y = 0 . (B-22)

The characteristics equations (B-22) are equivalent to the continuity and momentum

equations provided the gas pressure is determined alone by density (as for an
isentrope).
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APPENDIX C

The Meaning of the Characteristic Theory

(a) The Meaning of the Characteristic Equations

The meaning of the characteristic equations derived in Appendix B becomes ¢lear
from the results of Appendix A, According to Appendix A, the time rate of change of
a2 quantity P along a path of slope u + a8 i8

ap .3 2 on)
dt = e ¢

X
1 =2 *
along dt = u a

If P 1is assumed to be the quantity (u + o) ,

d(u + o) o(u + o) U + o) )
( at ) =T tete ' c-2

along :—3- u+a

The characteristic equation thus states that the time rate of change of u + o along
a path of slope u ta 18 zero, This is written for ocvnciseness as (see Appendix A) °

D(u t
—————(u 2 =0 . (C-3)
Dt

The characteristic equations state that within the gas there is no change in the
quantity u t o to an ohserver traveling with the veloeity u : a . Equivalently,
one may state that along a charucteristic line in the x-t plane (defined by a slope
u t a in this plane) the quantity u t o remains constant. Therefore, on the x-t
plane two sets of ‘“characteristic lines” are obtained: one with the slope u + a ,
along which u + o 18 constant, the other with the slope u - a , along which u -o
is constant. The two sets intersect and form what is known a#s a characteristic net.

? v+ alines

v =a lines

X——

t ——p
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These characteristic lines may be interpreted as the paths of disturbance waves,
since as one goes along a cheracteristics line, one travels at the same speed as an
acoustic disturbance would, that is, at the local sound speed relative to Lhe moving
fluid. (See Equation (6-4) of the main text.) Thus, the characteristic net is quite
naturally viewed as a net of interacting disturbances. The number of disturbances to
be considered is arbitrary, depending only on the number of characteristics one desires
to examine,

To make these ideas clearsr, consider the case of an isentropic flow of a gas in a
tube. For each and every point in the x-t plane which describes this flow there
exist corresponding values of pressure, gas velocity, temperature, sound speed, etc.
Let the area on the x-t plane be divided into an arbitrary number of squares; in each
square let the value of “u + a" which exists at the middle of each of the squares be
written as shown in the sketch, whersnumerical values have been written for illustration.

T 6 |5 | 4|20 :
* 7 5 4 2 $>u+a valve
8 | 6 5 4 o5
o |7 |6 |6 |4 ’
t ————p

Let any mid point of any square in the x-t plane be selected, From that mid-point,
draw within the square a line of the slope equal to u + & in that square. When the
line intersects the adjacent square, draw & new line in the adjacent mquare of slope

equal to u + a in the adjacent square. Continue this process.

Ve Start
T é 5 4 2 o
X 7 5 y 3
"
8 | ¢/5 |4 ~
9 / é é ™~ value of u + a
t 1

The path traced by the above procedure is a line of slope u + a . It may be made
as smooth as desired by decreasing the size of the squares, It is a ‘u + a”"
characteristic line and along it the quantity u + o remains constant. This
procedure may be repeated to yleld as many u + a lines as desired.
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— y 4
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Along each u + B 1line, u + ¢ 1s a constant, in general, a different constant for
each line,

x —

t ——»

A like procedure could be applied to squares containing values of u -~ a within
each square; this would result in u ~ a lines.

Start
N
T =6 -5 -3 -1 A
X \ 7
=5 -4\\-3 -2 -1 u=-aline
Y il
t ———p

On each u -8 line the quantity u - o 1s a constant,

Aa a result of the property that the quantity u t o remains oonstant along the
disturbance paths of slope u t a , the behavior of the gas and.projectile in constant
diameter portions of a gun can be found by using the characteristios net; in general,
a numerical procedure is necessary. In some instances an analytic solution occurs, as
for the case of the simple wave region discussed in Appendix D.
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APPENDIX D

The Simple Wave Region in a Dc/D: =1, PP Gun

Let the relevant case of a preburned propellant gun of DO/D1 =1 be considered.
At the instant the projectile begins to move, a ‘u - ar disturbance is sent back
towards the brasech. This disturbance travels at a speed equal to -a, , since it moves
at a speed of u - a into a gas at rest with sound speed a

f.

X

0"

PROJECTILE PATH

t —»
FIRST "u~a" DISTURBANCE WAVE

—

— 4 —

dx

'dT=u-°-—--d°

During each succeeding instant that the projectile moves, it sends back toward the

breaech u - a disturbance waves. In the sketch the projectile path is represented as
A-B-C-D-E,

"
: t —p
; \ . u=a DISTURBANCES
g FROM PROJECTILE

To determine more concerning the behavior of the gas let the ‘“u + a" characteristioc

lines which extend from the region A-O-L be considered. These are shown dashed in the
sketoh.
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X —»

vto= 0
REGION
OF
REST
t —»
o

The region A-0-L is a “rest"” region in which the gas has been undisturbed.
Consequently, in this region w =0 and o= ¢y For any u+ e characteristic
which extends into this region, e.g., characteristic R-8-T, the sum of u +o is
therefore

u+o = 0+ Oy = Ty
Moreover, according to the characteristio equations, this sum is constant along the
entire characteristic., Thus, for all the u + a characteristica which oxtend into
the rest region A-0-L,

u+o = o, . (D-1)
Hence, this equation, which 1s true for all u + a ocharacteristics in A-O0~L, applies

to the entire region into which these characteristics exist, the region A-O-L-E, where
E is the point where the first reflected disturbance reaches the projectile,

x PROJECTILE PATH
A vtoe < oo
e
v /\\ FIRST REFLECTED
N Aldrs DISTURBANCE t—
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The iuvgiun A-O-L-K 18 termed & “simple wave” region. It occurs because all the
u + a characteristics within it extend into a region of constant state, in this case
a rest state. The entire region is described hy the equation

It is to be noted that the u + a 1lines in the region A-L-E are not straight lines
but are curved; in the rest region, however, the u + a 1lines are straight lines
with slope equal to 8 .

!

X

A-O-L-E IS
SIMPLE WAVE
REGION

v+ a LINES HAVE

SLOPE OF VARYING SLOPE
v + a LINES AN A-L=E
IN A-O-L

t >

The u - & ocharecteristios each have u —~ o 3qual to a constant along them. For
example, for the characteristic B-M in the sketch

u-o = u; -0y = constant (D-2)

o L M e

Let the portion of this characteristic B-N which 18 in the simple wave region be
oonsidered; for any point on this portion, e.g., point J, Equation (D-2) becomes

s 3 up - 0 = oconstant . (D-3)
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But since this point is in the simple wave region
u, toy T g (D-4)

From Equations (D-3) and (D-4) it is found that along the u - a 1line B-N within the
simple wave region,

=
]

constant = (o, + uy - B)/2

o = oconstant log = (g ~op)]/2

and, hence, the other thermodynamic properties a , p, 0, etc., are sach constants,
The slope “u - a" is therefore a constant. Thus, the line B-N is a straight line. By
the same argument all the u - a lines originating at the projectile are straight
lines within the simple wave region.

T

x v = a LINES IN SIMPLE E
WAVE REGION ARE
STRAIGHT LINES

CURVED u ~ a LINES
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The Numerical Procedure to Determine
The Behavior in a PP Gun with D /D, =1

The following equations will be employed

%(U+0')+(U+n)§(u+0) =0 (E-1)
9

sz(u—a') + (U - a)-gx-(u~0) =0 (E-2)
p = p(o) for the given entropy (E-4)
a = a(p) for the glven entropy (E-5)
o = o(p) for the given entropy . (E-8)

The method used to obtain the last three isentropio relations from real gas thermo-
dynamics data 1s discussed in Reference 5; these three relations are in graphical form.
An x-t diagram is employed as a visual aid in the solution. The procedures outlined
in (1) and (ii1) below are essentially those desoribed by Heybey®, for a Neble-Able
gas. (See also Poa'® and Rudinger®!).

(1) Determining the conditions at an unknown point
within the characteristic net

It is assumed that the characteristic lines are composed of chains of connected
straight segments; these straight segments, which connect points of the characteristic
net in the x-t plane, replace the actual ourved lines. (However, the soclution may
be made as acourate as desired by the use of smaller steps.) Thus, the characteristic
net oonsists of quadrilaterals, the sides of which are parts of characteristic lines.
1f the conditions (u, o, x, t, p, a) at the points A and B (see sketch) which are
diagonally oppogite corners of one of these quadrileterals are known, then the
conditions at point C, one of the other two corners of the gquadrilateral, ocan be
determined from the equationo listed above.

By characteristic equations (E-1) and (E-2)

uc-an = U, -o,, uc+0‘ = u!+c7
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A
X -
;b C
/
B
AI
NN C t ——»
AW
Therefore, d
lg = ¥ (ug +uy + oy -0y
(E-T)
oy = F(up -u, +0, +0y)

By Equations (E-4), (E-5), and (E-6) the velocity of sound and the pressure at ¢,
8, and P » mAy be determined from O - The slopes of lines A-C and B-C are taken
as arithmetic means of the slopes at A and C, and the slopes at B and C:

[(u, -8y + (u, - 8]

[}
saie

(slope)A = B,

= L
Sg = & [(up + 8y + (ug +ay)]
Then the straight lines through A and B intersect at C with coordinates

By(xy = Bgtp) = By(x, - 8,t,)
Sa= By

(BE-8)
(xg = Bgtp) — (x, - B,t))
By — 8y

ot
[}

Thus, all the conditions (u, o, x, t, p, a) at C are known from the conditions of the
two points A and B.

A special case of the above is when the unknown point (here C’) is on the t-axis
(at the breech). In this case conditions at only one adjacent point need to be known.
From then Uyr = 0, Xt =0, and

Tor = (G‘Al = U,r)

By = 1 (Wyr -8, = 8g1) (E-9)
X,

tyr = tA,_—_A-
a!
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(ii) Determining the point at whirh the firct reflactad
wavelet reaches the projectile

By usc of the simple wave equallions, the piston path can be obtained until the
first reflected wavelet reaches the projectile. However, this point is unknown and
can be found by the procedure described here,

L M

Point E in the sketch, at which the first refleoted wavelet reaches the projectile,
is the intersection of the projectile path as determined by the simple wave equations
and the first wavelet A-L-E. From point A (the initiel projectile position, x = “Xg)
the first wgvelet’s path to the breech may be drawn lmmedimtely, since it is a straight
line of slope equal tou - a =0 - 8, = -8, . The intersection of the first wavelet
with the breech is at time equal to xo/a° ; all the conditions at L are known

¢ =0y, u=20, x = -X,, t = xo/a0 T

Now a point B on the projectile path adjacent to A should be selected'. The conditions
at B are known from the simple wave equations and Equations (E-4) through (E-6).
Therefore, the conditions at 1 (the intersection of the reflected wavelet ascending
from L and the wavelet descending from B) may be obtained by the method desoribed

above in (1). 8imilarly, from C, a knowh point on the projectile path adjacent to B,
and from point 1, the conditions at point 2 may be calculated. In this manner the
reflected first wavelet 1s continued until it intersects the projectile path (at E).

iy

* The spacing of point B from A (and C from B, etc.) is such that any smaller spacing would
yleld the same results within the accuracy desired.
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(1338 Detarmining the projecicic puint ufier the first reflection

The characteristic net must be continued in a step-by-step fashion to obtain the
piston path and gas behavior after Lhe first reflection point at E. Point M at the
breech is cbtained by the method outlined in (i1). Point 4 is obtained from the
conditions at 2 and M, and so on up the reflected wavelet M-4-5-6. From the conditions
at point E on the projectile path and from the point 6, the desired point G may be
obtained by an iterative process. The iterative process demands the following:

(a) Point G is the intersection of a line through E whose slope is the average of
the slopes at E and G (on the line E-G), and s line through 6 whosc slope is the
average of the slopes at 6 and G (on the line 6-G). Thus,

slope E-G = B

g = 172 (ug +up)

slope 6-G = 8, = 1/2 (u, + &, + ug + ag)

(b) Newton's law applied to the projectile is satisfied in the interval of time
between E and G. Thus,

Ug = Ug

tg - tm

As a first approximation the time at point G, té’) , 1s obtained as the intersection
of a line from point E with slope up and of a line from point 6 of slope u, + &, ;

By ) ia provisionally assumed equal to ap and the first approximation of the velocity
at point G {8 found from

A
ugt = g+ (80 -t wp o
Then
(1)
s( = Eﬂz,_“_q_
(2) (u, +84) + (ugl) + aéi))
86 =
2
£(2) = (xg = 5§2))t§) - (xg - séz) ty)
0 () _ l2)
E [
(1)
+ A
I T S T e S

2 M

[ - 2
ol® = (u, + 0oy - u{?
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p!?> and al® are obtained from Equations (E-5) and (E-6);
a |

(2)
UE+UG

s{" = Y (9

(

u, +a) ¥ (uf® + géfﬁ)

3 6

and so on. The process is auickly converging.
on the projectile, the procedurc may be slightly

2

If a counter-pressure is assumed acting
altered to account for this,
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. APPENDIX F
The Classical Approximate Solutions to the
Internal Ballistics Problenm

(1) Lagrange’s Method of Assuming the Density to be a
Function of Time

As previously mentioned, the classical ‘“Lagrange Problem of Internal Ballistics”
is the problem of what occurs when & projectile initially at rest in a constant cross-
sectional area gun is propelled by a propellant which burns instantaneously. The
process is considered as one-dimensional, frictionless, and adiabatic. Lagrange*®
initiated the study of this problem in 1793, when he presented an approximate solution
to the problem. He assumed thot the propellant ges density o was B function only of
time and not of distance x , 1.e.,

P = Pt . (F-1)

With this assumption, by use of the continuity and momentum equations, the following
relations are derive¢ (a8 shown, for example, by COrner“) for the D0/01 =1 gun .

u X+ X
— T (F=-2)
up Xp + X,
a linear velocity distribution,
p a 6 /x +x,\2
—_— 2 ] = — [t (F-3)
Py 2§ M Xp + Xg
a parabolic pressure distribution.
p G
BT RIS R (P~4)
Py M
a constant ratio between px"essure at the breech and projectile,
[ G
2= 4= (F-5)
Py M
 Kinetic enorgy of gas = } (} au}) (F-6)

u? = _..2_08.';__ 1 - __.x_ﬂ___y-.l . (F-7)
Py -1 X, + X
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Thus, Lle assumption © - o(t) leads to the condition of a parabolic pressure
distribution, with pressure ratio for the gas at the breech to that at the projectile
a constant; obviously, this is not true for the lLagrange problem at tho start when the
pressure 1s uniform in the chamber. It is mlso noted that the projectile velocity
becomes infinite for infinite G/M and infinite travel; this is, as known from the
discussions of the main text, not true.

Nbvartheless, this approximation accounts somewhat for the gas inertis, and for the

case of low G/M (and, hence, low velocity, and many reflections of the first disturbance
from the projectile) is a convenient approximation.

(2) The Special Solution of Pidduck and Kent

After Lagrange had initiated the study of the “Lagrange Problem”, Hugoniot®°
extended Riemann's theory of waves of finite amplitude and applied it to the problem,;
he solved it to the point when the first expansion disturbance shed by the projectile
reached the breech. Gossot and Louisville went still further and followed the first
expansion disturbance after it had been reflected from the breech back to the projectile.
The culmination of this method of attack (which did not use the method of characteristics)

was the complete solution as far es the first disturbance traveling back and toward
the breech for the third time by Love®! in 1921,

Love replaced the system of hyperbolic quasi-linear partial differential equations
which describe the problem by a single partial differential equation of second order
for one single dependent variable and solved it separately for each wavelet. His
solution contained lengthy and involved computations and was velid only for a

Noble-Abel gas (with isentropic relation p(v-b)” = constant) whose ratio of specific
heats was of the form

2n + 1
2n -1

where n is an integer.

Pidduck, noted, from the results he had calculated with Love’s equations, that the

ratio of the breech pressure to the pressure of the gas directly behind the projectile
oscillated as shown in the sketch.

T

Phreech
Pprojectile

pl--lo

Pp

LIMITING VALUE

time —p

e e e
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This oscillation is a result of the lowering of the pressure occurring as the firsat
disturbance reflects back and forth between breech and projectile. Pidduck found that
the oscillations damped out and that the pressiure ratio approached a certain limiting
value, He then deduced a “special solution’ to the governing differential equations
which indeed did yield the condition that the ratio pa/pp is a constant, not only- in
a limit but at all times. This solution, an analytic one, did not satisfy the initial
conditions of the Lagrange problem; the initial conditions for the special solution
were a non-uniform distribution of density and pressure, Pidduck and all later
investigators have suspected, but not proved, that the accurate solution to the
Lagrange problem approached the special solution in the limit of large travel.

The special solution has aslso been derived by Kent®? and by Vinti and Kravitz®?
(See also Corner'®)., It is often referred to as “The Pidduck-Kent Special Solution”
or “Pidduck Special Solution”. The essential results are as follows.

u X + X

—_ = —— (F-8)

up xp t x°_

-
Prevxg = -wp TV P-0)
Dp '
or, fora ¥Y=1 gas,

Py o

S = e (F-10)
p

where 3} and o, depend on G/M and <y, as shown below and plotted in Figure 44,

y pl 1
<] 2y A ~ e ~ vyt
- = 8, (1-8,) ”! 1-a.uh)” F-11
iS50 (1= f(ou)u (F-11)
0
or, for a 7 =1 gas,
G ' 2
o -0
= = 2a°e°f e ¢ du . (F-12)
M
0
For small G/M, W, may be approximated as
~ Gy - 1) 3y-16 [t 1 1 a\?
B, ~ —————— ] - -t |- — =) b P-13
© T MeY 8y M L 12y 130?](»«) (F-13)
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The proujeciiiv velocity is obtained as

2243, : X, 7-ilt
u = -
P v-1 X, + X,

i g \t-7]#
. 2 1_(”&)

{ (F-14)

Y ~1

and, for ¥ =1,

1
= 2a,Va, l-ioae (1 + FX/P"TEI (F-18)

where

£, = == . (F-16)

Thus Figure 44 may be used in conjunction with Equations (F-14), (FP-15), and (F-18) to
to calculate the projectile velocity for any gun, even & chambersd gun, although the
solution was derived for a DQ/D1 =1 gun, Then, for the chambered gun, x, should
be replaced by "vo/Ax in the above equations.

The above results may be deduced for a Da/D1 =1 gun with a covolume propellant
gas, and have been applied as an approximation to even the case of a chambered gun
with a covolume propellant gas. In the chambered covolume case the sound velocity
8, in all the equations sbove should be replaced by VYRT, =V¥Dy(v, - b) and x,
should be replaced by (A x, - bG) /A, .

It is found that, when G/M becomes infinite, 3’0 approaches one. In this case,
for the Do/D1 = 1 gun, the projectile velocity becomes, from Equation (F-14),

2, x, V! 1
up = 1- (P-17)
7-1 Xp + X,

which, for infinite travel distance, hecomes equal to 2&0/(7.— 1) ; this 1is, as it
should be, the escape velocity for a DO/D1 =1, x;=w gun.

* However, the same result for ¢scape velocity is arrived at for a chambered X, = © gun,
for which 1t is incorrect.
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The epoeisl solutisn apslics o Lhe Doxﬁl = 1 gun in which initislly there is &
pressure gradient in the propellant gas; the Lagrange ballistics problem (the PP gun
nrablem), however, assumes no gradients initially. Pidduck and later investigators

- 'acted, but never proved, that the special solution approaches the acurate solution
16 limit of large travel. The results of calculations made on the electronic
- -puting machines (see Section 28) meem to confirm this suspicion.

The computed results indicate that, indeed, the special solution is an amazingly
good approximation for the finite chamber length PP gun for any DO/D1 ; this is true
for small projectile travel as well as large travel. A comparison of the special
solution results with the computed results for the PPIG gun is shown in Figure 21.
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APPENDIX G
Equations for a Shock Moving into f Gas
at Rest in a Closed End Cylinder

Let a shock moving into an ideal gas at rest be considered.

S1 k
—

Y,
1
Pyr Psvg— DI v=0 71,P1,P1,91

The equations describing this situation are summarized below (see, for example,
Glass!i% 112 or Lukasiewioz!!Y),

2 ., 2 2
P = 1 +w 2 +.2££2 1+ Zl_+_1 st (6-1)
P,y 4 8, a, 4 8,

= (5 ‘ n-! (6-2)
Y, +1\a, 7, + 1
R RES Y
-1
.&2 = —-—ZL—.—PJ. (6_3)
Py Y, t1 L7 /
-1 p
8,\2 -1/8\? 2
= (=) = A, (6-4)
a /1Y, +1\a, Y+ 1
2
-a_?. = 33.. = 2&’./&& (G-5)
8, T CIVZR
s 2
=1} -1
Ug 2 (a)
—_ = (G-8)
8 Y, i 8,
8,
7o b ]
S S S (G-7)
2% ., + 1D,
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or

2
b -1
’)’1-1E)2p1

i \/ﬂ_h Dy, %+ ]
71'1p1 pl 71 "L
2 a, \?
1 - (= (6-9)
y, +1 8,

+1
y‘4 u, {1 + '\/1 + Ela.l/('y1 + l)uz]"’} . (G-10)

(G-3)

If the shock is a strong one (i.e., p,/p, >> 1, 8,/a, >> 1) these equations

become

+ 1 2
Py o X D fuy (G-11)
Dl 2 ﬂ.‘
2 5.\
N (5 (G-12)
¥, +1\a,
Poo o utl (6-13)
pl 71 -1
To o % -1py (G-14)
T, ¥ +10D,
n 27 =D N (G-18)
2 8,
Spa 25 (G-16)
1 Y, t1lay
= 2P (6-17)

YN 2 (6-18)
‘2 71(71 = 1)

(G-19)

o Ls:
i?

Y+
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When the shock reeches the end of the tube 1t is reflected as shown-in the sketch.

S2

——m

4

u=0

Py Pr vy —» B

P3’ £3r 93

By superimposing the velocity u, to the left, this becomes the case of a shock

moving into a gas at rest.

+
S2+ vy
" "
Pa, P, u=0 @@";3‘;2 .
P30 3

The following equations apply to this reflected case:

Y+l
Bl = 7 s

)

Py

-2

(G-20)

(A1-213

(G-22)

(G-23)
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APPEND{X H

The One-Dimensional Unsieady Characteristic Fquations
for the Case of Gas-Wall Friction and Heat Transfer

Here 18 irreversibility and inhomogeneity introduced by the gas-wall friction and
heat transfer are assumed to be of a magnitude such that p, o, 8, u, etc., may
still be defined for each gas layer at position x and time t . Also, it is assumed
that the second law equation, Tds = du + pdv , is valid within the gas layer. Then,

with F the gas-wall friction force per unit mass, the force equation for the gas
layer becomes

F p Adx
du . du 1 9p P (1)
— u— = - —— N -
ot 3x 0 Ox
dx =3 | GAS
LAYER
The continuity equation and the gas law are
u 2 + Su + Kl = 0
% Pt (H-2)
p = ppe) . (H-3)

These equations may be manipulated to yleld the following characteristics equations:

Du 1 Dp 1<3p <ds
—t—— =t (—=]=~F (H-4)
Dt wpo Dt a0\ 98 » \dt

where a is the sound speed and D/Dt 1is defined as

& ° + (u t 9 (H-5)
Dt 3t e ox
and d/dt is
9 9
— B — U= . (H-6)

dt ot ox

To obtair the entropy change for each gas layer, use is made of the first law
equation rpplied to the gas layer.

d<+u2>
v+ —
2/ _ 13w .

+q (H‘F{)

dt £ ox

ot
et il

, - — -
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wnere Vv 18 1internal energy and d is the rate of heat transfer into the layer per

unit mass. The second law applied to the gas layer is

Equations (H-1), (H-2), (H-7), and (H-8) may be combined to yield

2 F :
— = Fu +
dt 4

which 1s Equation (39-6) of the text.

(H-8)

(H-9)

B w RN SETTVSRIRN—_— . 4
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APPENDIX 1

The Equivalence of the Ideal and the Abel Equations
of State in Application to the Lagrange Ballistic Problem
(D/D, =1, x5 =0

In Reference 54, Heybey discusses the significant parameters of the Lagrange
Ballistic Problem. This classical internal ballistics problem is the problem of what
occurs when a projectile initially at rest in a constant cross-sectional area gun is
propelled by a propellant which burns instantaneously (thus initielly establishing a
uniform high pressure gas behind the projectile). This process is considered as one
dimensional, frictionless, and adiabatic. Heybey demonstrates that, for a gilven ratio
of propellant gas mass to projectile mass (G/M) and a given ratio of specific heats

" (7) the dimensionless projectile motion is the same function of dimensionless time

for the Abel gas as for the ideal gas., However, the characteristic net (the interilor
of which must be used to obtain the behavior of the gas behind the projectile) is
different for the two casss in the Eulerian coordinate system which Heybey uses; a new
characteristic net must be calculated with the Abel equation of state for each value
of the covolume (see Figure 6, Reference 54).

It will be shown here that if Lagrangian coordinates are employed to sulve the
Lagrange problem, & seemingly natural choice, the use of the Abel equation of state is
equivalent to that of the ideal squation of state; the two cases become ove w' : ~ne
characteristic net.

It can be shown (see Courant and Friedrich!5) that in Lagrangian coordinates the
characteristic equations describing the isentropic unsteady one-dimensional flow are

-] 9
— (uto) tk — to) = 0 I-
e ( ) 3 (u ) (I-1)
X(H, t) '
where H = f(o &) pdx (the mass per unit erea of gas from a given point in the flow
x +

to the breech of the gun) and k 1s the acoustic impedance of the gas, poa . The
dimensional variables become dimensionless by the following transformations:

- 1u - - 2 VART
a = ..(y_.__).. ) a = .(.Z.— 1)0', k = __?_/__D,
- 2/RT 2/)73'1'0 (Y- P,
p.Ax (v - Da p
I = > LB R e, p = — L. (1-2)
ayRT [2/¢y-1)]? 2/9RT, P,
2
;oo RMO-D 5 - 2>mnp; g A
29’7RT° 7— DO J
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With the use of (I-2) the characteristic equations become

3 . 0
. = (it tk— @& = 0 . I1-
3 ( ) e ( ) (I-3)
Newton’s force law applied to the projectile becomes
b

dt

I
=i Q
L1}
—
Juey
1
£
Al

The isentropic law yields, for both the ideal gas and for the Abel gas, the
following relations:

(y + 1)
R =g »
Y ~-1
(I-5)
(v -~ 1)
g =5 ¥
The initial conditions for the Lagrange problem are
H =1 , t = 0 at the projectile
. _ . (1-6)
H = 0, %t = 0 at the breech

The entire behavior of the gas and projectile are determined by the dimensionless
equations (I-3) through (I-6). A characteristic net on the H-t plane can be
calculated from the equations. Since these equations desoribe both cases (the ideal
and Abel gas cases), only one solution for a given G/M and *y is necessary. The
ideal and Abel gases are equivalent in this system of coordinates in application to
the Lagrange Ballistic Problem.

. L |

Uy PROJECTILE PATH

r .0k

m

C

2y
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A characteristic net in the H-t plane for the Lagrange problem is shown in the
previous sketch.

It 18 interesting to note that the equation for the first reflected impulse (B-C)
can be obtained analytically. This relation is

1 Y+1G
- 2y M 2y M
o= |1+ - 14 (1-7)
Y+14a Y+16G_
1+ -t
. ¥Y~-1M

!
A comparison of the two propellants initially is shown in the sketch.

G M

s
Abel Gas _ * %

Y S— . -
I7A e— *op > . SAME Vp
idegl Gc@
2l

G

It is important to remember that, with a chambered gun, the performance of the
Abel and ideal gases are no longer equivalent. Because of the increased enthalpy
{or j.dp/p) of the Abel gas relative to the ideal gas, the Abel gas gives better
performance for the same G/M.

-~

AR - N T
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APPENDIX J

Equations for the Thermodynamic Properties
of an Isentropically Expanding Ideal Gas

191

For an ideal (or perfect) gas the thermal equation and isentropic equation are,

respectively,

o
11

PRT = p-T

=131

he
1"

PY (B /)

where the subscript “0” indicates an initial state from which the gas expands.

(J-1)

(3-2)

From

these equations the following relations may be derived for the isentropic expansion of

the ideal gas in terms of the Riemann Function o (defined as do = (dp/ag) g):
a = (y-10/2
h o= a¥/(y-1 = (v=-1)0%4
P = pyla/r )2/ (71

p = pylofo)? 7Y

ap:D]/l._p_w-—yp"lw .!’
*VRT, \p, 8y \P

(J-3)

(J-4)

(J-5)

(J-8)

The expressions for ao and o as functions.of p during the isentropic expansion

(J-1

(J-8)
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GENERAL REFERENCES

The number of papers published on the subject of high velocity gas guns within the
past twenty years is multi-tudinous. Dr. Glass, in Reference 24, recently has made a
survey of constant diameter preburned propellant guns. It is suggested that reviewing
the proceedings of the following two symposia, which are each held every year to two
years, will quickly famliliarize one with the field:

.

(1) Symposia on Hypervelocity Impact, sponsored by the US Army, US Air Force, and
US Navy. The last symposium was held in Tampa, Florida, in November 1064.

(2) Symposia on Hypervelocity Techniques, sponsored by various groups. The last
symposium was held in Denver, Colorado, on March 1, 1964.

The predominant number of publications in the field of high-speed guns-tias been
produced by the following Laboratories in the United States:

(1) US Naval Research Laboratory. Washington, DC.

(2) Ames Research Center, NASA, Moffett Field, California.

(3) US Ballistic Research Laboratories, Aberdeen Proving Ground, Maryland.
(4) US Naval Ordnance Laboratory, White Oak, Silver Spring, Maryland.

(8) Generrl Motors Defense Research Laboratories, General Motors Corporation,
Sante Barbara, Californisa.

(6) Arnold Engineering Development Center, Arncld Air Force Station, Tennessee.

(1) Denver,Research Institute, University of Denver, Denver, Colorado.

(8) AVCO Corporation, Wilmington, Massachusetts and Everett, Massachusetts.

(9) Armour Research Foundation, Illinois Institute of Technology, Chicego, Illinois.

In addition, the following Laboratories outside of the !nited States have been
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